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Preface 

This report summarizes the research conducted during the 2025 Water Prediction Innovators 
Summer Institute (WPI-SI). The WPI-SI is the result of a partnership between the Consortium 
of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI) and The University 
of Alabama. CUAHSI is a 501(c)(3) nonprofit organization with a mission “to empower the 
water community and advance science through collaboration, infrastructure, and education.” 
The Cooperative Institute for Research to Operations in Hydrology (CIROH) funds this 
programming and supports the WPI-SI as a part of its mission to “to innovate research that 
enhances our understanding of how coupled atmosphere-oceanland-biosphere components 
interact hydrologically and transform this new knowledge into operational research products 
benefitting society.” Funding for the Summer Institute is provided by the National Oceanic and 
Atmospheric Administration (NOAA), awarded to the Cooperative Institute for Research on 
Hydrology (CIROH) through the NOAA Cooperative Agreement with The University of 
Alabama, NA22NWS4320003. 

Since 2015, The University of Alabama campus has hosted the WPI-SI. Graduate students come 
from different universities across the United States, and work alongside academic faculty, federal 
scientists, researchers, private companies, and contractors in Tuscaloosa over the seven 
weeklong program. The research themes that students work under are ideated with input from 
the Office of Water Predictions (OWP) which has been supportive of this program from its 
inception.  

Student fellows formed teams based on shared research interests and worked under the guidance 
of theme leaders throughout the program. This year, six teams were established, each focused 
on a specific research question. Projects included the application of deep learning techniques for 
flood inundation mapping and discharge forecasting, as well as the development of tools for 
visualizing flood extent in urban areas at higher spatial resolutions. 

In addition to their research, participants took part in social events and outings, forming lasting 
connections with their peers. Course Coordinators, both of whom were fellows in the past, 
offered assistance and support throughout the summer. For the fellows, the Summer Institute is 
more than a research program. It fosters teamwork, networking, and the development of lasting 
friendships. 

 

Fellows 
The 2025 cohort included 22 graduate students from 17 different universities across the United 
States. They began their journey with virtual meetings, which culminated in a two-week 
bootcamp to form teams, and participated in training on coding, data retrieval, and 
understanding key topics to their research projects. Then research teams mentored by theme 
leaders worked to complete their research projects, while giving weekly research talks to share 
their progress and receive feedback and guidance. The program culminates with this report and 
a Capstone Event wherein research teams present their work to a broad audience of researchers 
and peers. The fellows and theme lead hail from various academic departments, including civil 
engineering, geography, and earth sciences. 

 

Themes and Theme Leads 

The WPI-SI 2025 themes and theme leads were: 
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● The “Operational Flood Inundation Mapping” theme was led by Sagy Cohen (The 

University of Alabama) and Yinphan Tsang (University of Hawaiʻi at Mānoa). Additional 
technical support was provided by members of the Surface Dynamics Modeling Lab 
(SDML - The University of Alabama). 

● The “LSTM for NextGen” theme was led by Jonathan Frame (The University of 
Alabama) and Amobichukwu Amanambu (The University of Alabama).  

● The “Pluvial Urban Flooding” theme was led by Marouane Temimi (Stevens University) 
and Jonathan Frame (University of Alabama). Additional technical support was provided 
by Mohamad Abdelkader (University of Iowa). 

● The "Visualization of Urban Road Flooding” theme was led by David Maidment 
(University of Texas at Austin) and Kelsey R. McDonough (The Water Institute). 
Additional technical support was provided by Matt Bartos (University of Texas Austin) 
and Dean Djokic (ESRI). 

 

Project Summaries 

The 2025 WPI-SI projects are summarized below. Chapters 1-6 present the complete reports.  

1. Project within the Operational Flood Inundation Mapping theme:  

Chapter 1: “A Comparative Analysis of Multi-Method Flood Inundation Mapping: Quantifying Fidelity–
Accuracy Tradeoffs and Bridging Gaps via Hybrid Deep Learning”. This report evaluates three 
operational Flood Inundation Mapping (FIM) methods such as the NOAA HAND-FIM, 
Ripple1D, and Pre-Canned hydraulic libraries against satellite-derived benchmarks. While Pre-
Canned FIMs offer higher spatial accuracy, they suffer from limited coverage. HAND-FIMs 
cover the full stream network but often underpredict extents. To improve temporal continuity, 
a novel deep learning model called FIM-BridgeNet was used. The approach produces accurate, 
scalable, and temporally continuous FIMs, supporting improved flood preparedness 
applications. 

2. Projects within the LSTM for NextGen theme:  

Chapter 2: “Scoring Rule-Based LSTM Models for Flow Forecasting in the NextGen Framework. This 
report presents a deep learning framework for predicting surface runoff in distributed 
catchments using a distribution-based loss function that bypasses physics-based routing during 
training. The novel ML-based strategy selects optimal modeling structures to capture basin 
hydrological signatures. The method enables efficient transfer of spatiotemporal information, 
supporting scalable calibration within the Next Generation Water Observing System and the 
National Water Model. 

3. Projects within the Pluvial Urban Flooding theme:  

Chapter 3: “Towards Representing Pluvial Flooding within NOAA’s NextGen Modeling Framework”. This 
report evaluates the capability of the Next Generation National Water Modeling Framework to 
detect pluvial flooding at local scales. By analyzing Pluvial Flood Indices across varying 
catchment sizes and land cover types, results reveal higher PFIs in small, urbanized basins, with 
variability depending on urban extent. While PFIs generally decrease with increasing catchment 



Water Prediction Innovators Summer Institute 2025   

5 

 

area, they rise again when multiple urban zones are included. Findings provide benchmarks for 
improving the NextGen spatial reliability in pluvial flood forecasting. 

Chapter 4: “Demonstrating the Feasibility of DL-Based Pluvial Flood Mapping in Urban Settings”. This 
report explores the use of deep learning as a surrogate for high-resolution, street-scale pluvial 
flood modeling in urban environments. Applied to Hoboken, NJ, the framework combines 
historical and synthetic rainfall with spatial inputs using 2D and 1D Convolutional Neural 
Networks to generate binary flood maps. The model achieved strong performance 
demonstrating the potential of deep learning models for rapid, accurate pluvial flood forecasting 
within future platforms like the NOAA NextGen framework. 

4. Projects within the Visualization of Urban Road Flooding theme:  

Chapter 5: “Towards a Flood Navigation and Safety Decision Support Tool: A Pilot for Emergency Responders 
in Travis County, Texas”. This report presents FLO-NAVSAFE, an operational decision support 
tool that translates National Water Model forecasts into county-level flood inundation maps for 
emergency response. Using the Height Above Nearest Drainage method and time-lagged 
ensembles, it offers near real-time and short-term forecasts with uncertainty characterization. 
FLO-NAVSAFE integrates stakeholder priorities and vulnerability data through a user-friendly 
Esri interface. 

Chapter 6: “Estimating Flood Inundation Using a Densified Stream Network in Travis County, TX”. This 
report assesses the impact of stream network density on flood modeling by downscaling 
National Water Model runoff to a finer-resolution network in Travis County, Texas. Compared 
to the original NWM network, the densified network better captures low-water crossings and 
yields improved streamflow estimates during a July 2025 storm. The densified model also 
produces more extensive and continuous inundation patterns, demonstrating its value for 
enhancing community-scale flood forecasting in urban areas. 
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Chapter 1:  
A Comparative Analysis of Multi-Method Flood 
Inundation Mapping: Quantifying Fidelity–
Accuracy Tradeoffs and Bridging Gaps via Hybrid 
Deep Learning  

Faezeh Maghsoodifar1, Mohamed Mowafy2, Md Shadman Sakib3, Haotian Wang4, Sagy Cohen5*, 
Yinphan Tsang6* 

1 The University of Alabama; fmaghsoodifar@crimson.ua  

2 University of Cincinnati; mowafymd@mail.uc.edu  

3 Virginia Tech; shadman@vt.edu  

4 University of Connecticut; haotian.wang@uconn.edu 

5* The University of Alabama, sagy.cohen@ua.edu  

6* University of Hawaiʻi at Mānoa, tsangy@hawaii.edu  

* Theme Leader 

 

Abstract: Flood Inundation Map (FIM) is essential for flood preparedness, yet operational 
products often face trade-offs between spatial coverage and temporal continuity. This study 
evaluates the performance of three common mapping approaches, the NOAA Office of Water 
Prediction operational Water Prediction Height Above Nearest Drainage (OWP HAND-FIM), 
Ripple1D (R1D), and Pre-Canned (PC) hydraulic libraries, against satellite-derived flood extents 
(benchmarks).  The model's predictions are evaluated across varied and stream orders. Results 
show that while PC-FIMs provide greater spatial accuracy, they are constrained by limited 
coverage and discontinuity. HAND-FIMs offer full stream network coverage but often 
underpredict flood extent due to bias in discharge input. R1D-FIMs perform moderately but 
remain sensitive to flow input assumptions. To address the temporal sparsity between pre-
canned RPs, we introduce FIM-BridgeNet, a hybrid Deep Learning (DL) model that couples an 
attention Residual UNet (ResUNet) with optical flow warping. This architecture learns spatial 
deformations between low and high RP PC-FIMs to generate intermediate flood maps. Outputs 
are translated into water depth and discharge using elevation-based post-processing. The model 
achieves strong performance across RP ranges. These findings support the use of hybrid models 
to generate scalable, temporally continuous FIMs. 

 

 

1. Motivation 

The NOAA OWP operational Flood Inundation Mapping (FIM) forecasting framework is based 

on three complementary products: HAND-FIM, HEC-RAS-based models such as R1D and PC-

FIMs for specific Return Periods (RPs). Each of these products demonstrates strengths in either 
computational efficiency, spatial coverage, or mapping accuracy; however, none simultaneously 
achieves all three. Additionally, Pre-Canned (PC) FIMs are limited by discrete return period (RP) 
intervals.  The growing archive of satellite-derived flood extent offers a unique opportunity to 
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evaluate these methods across events ranging from nuisance to extreme. This convergence of 
complementary models and independent benchmark FIM motivates our project: to establish a 
clear, data-driven understanding of current inundation-mapping skill and to create a scalable 
hybrid Deep Learning (DL) technique that fills the temporal gaps between existing PC-FIM RP 
layers. 

 

2. Objective and Scope 

The project evaluates how accurately PC-, R1D-, and HAND-FIM predictions using RS-based 
benchmarks, to determine whether broader low-fidelity or localized high-fidelity models offer 
greater operational value. Building on those findings, we develop FIM-BridgeNet, a hybrid deep-
learning framework, to generate realistic intermediate inundation maps and estimate the 
associated discharges. The scope of work includes compiling RS benchmarks, computing 
accuracy metrics, analyzing trade-offs among accuracy and coverage, and training and validating 
FIM-BridgeNet. We believe that this research will guide agencies producing operationally 
accurate and temporally continuous, reliable FIM in near real time. 

 

3. Previous Studies 

Disastrous river flooding affects approximately 125 million people globally each year [1]. Global 
projections indicate that flood frequency is expected to continue rising over the next two decades 
[2]. This upward trend is evident in the United States (U.S.), where floods are among the most 
frequent and financially devastating natural disasters [3, 4]. According to the International 
Disaster Database, 691 flood-related fatalities occurred in the U.S. between 2000 and 2024 [5]. 
Most recently, a flash flood in Central Texas along the Guadalupe River claimed over 120 lives. 
Between 2010 and 2022, the U.S. experienced 21 billion-dollar flood events, exceeding the total 
recorded in the 1980s, 1990s, and 2000s combined, adjusted to 2023 dollars [6]. Although flood 
damage cannot be entirely prevented, early warnings, reliable forecasts, and accessible, actionable 
information can significantly reduce impacts [7, 8]. Providing emergency responders with 
accurate and timely flood extent maps enables more effective decision-making, conserves time, 
resources, and potentially saves lives [9]. These conditions collectively highlight the urgent need 
to improve flood modeling and forecasting capabilities across the United States. To meet this 
need, various approaches have been developed for real-time and forecast-based FIM. These 
efforts broadly fall into three categories: empirical, conceptual, and hydrodynamic. Empirical 
methods are observation-based, relying on high-water marks, surveys, aerial photography, and 
satellite imagery [10, 11]. While not predictive, they are critical for validating model performance. 
Conceptual methods, in contrast, are terrain-based and simulate inundation using simplified 
hydraulic assumptions rather than solving physical flow equations. These include planar surface 
methods, inclined planes, and the HAND approach [12]. Their primary appeal lies in their low 
computational cost, which makes them practical for large-scale or time-sensitive applications. 
Among them, HAND has shown robust predictive skill, particularly when derived using reliable 
streamflow and topography data [12-15]. The NOAA Office of Water Prediction (OWP) has 
developed a robust framework based on the HAND approach, which was coupled with 
streamflow predictions by the National Water Model (NWM) to support rapid FIM forecasting 
[16]. This integration, now part of the operational U.S. flood forecasting framework, has shown 
better performance in higher-order streams, albeit with some underestimation in lower-order 
channels [17]. Conceptual models like HAND remain well-suited for real-time applications and 
data-sparse regions, given their operational efficiency and scalability [18].   
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In contrast, hydrodynamic (physics-based) models simulate water movement by solving fluid 
dynamics equations in one (1D), two (2D) dimensions. These models, such as HEC-RAS 1D 
(https://www.hec.usace.army.mil/), are capable of capturing the complex behavior of floods 
across varied landscapes and infrastructure scenarios. They can be integrated with hydrologic 
models to simulate flood extent under different meteorological or infrastructural conditions. 
However, this physical realism comes at a high computational cost, especially when run at fine 
spatial resolutions (<10 m) or over large domains (>1000 km²). The computational intensity 
increases significantly in probabilistic or ensemble modeling applications. Despite the improved 
accuracy of 1D simulations, real-time operational use remains limited [19]. To address these 
limitations, pre-simulated or "pre-canned" flood map libraries have been developed, leveraging 
the accuracy of hydrodynamic models while avoiding on-demand simulation. These libraries 
typically contain flood extents for a discrete set of return periods (RPs), ranging from bank-full 
conditions to extreme flood scenarios [20]. By interpolating between pre-generated maps, 
practitioners can provide rapid flood guidance without incurring the full computational burden. 
These libraries have emerged as promising tools for operational forecasting, particularly when 
real-time decision-making is critical [21].  

FEMA has developed an extensive archive of one-dimensional (1D) HEC-RAS models to 
support Base Level Engineering (BLE) initiatives and the National Flood Hazard Layer. While 
these models are robust and widely accepted for floodplain mapping, their computational 
demands make them impractical for near-real-time applications. To address this limitation, the 
Ripple1D (R1D) framework (https://github.com/NGWPC/flows2fim) repurposes the existing 
HEC-RAS models to generate NWM reach-specific FIM libraries and rating curves. The core 
objective of R1D is to execute these models once across a predefined range of streamflow 
scenarios and store the outputs in a reusable library to be used for rapid generation of FIMs in 
near real-time. Nevertheless, these FIM products are generally limited to a few discrete RPs, such 
as the 2-, 5-, 10-, 25-, 50-, and 100-year events, requiring assumptions about how flood extents 
evolve between them. Recent geospatial advances have begun to loosen these constraints, such 
as Delaunay triangulation, have been employed to guide image warping between temporally 
distant satellite scenes, reconstructing plausible intermediate flood states while preserving fine-
scale channel geometry [23]. For example, the utility of warping satellite imagery to bridge 
observation gaps in river and delta morphodynamics has been previously demonstrated [24]. 
These innovations suggest a rethinking of flood extent interpolation, not as a linear blend, but 
as a constrained image-interpolation task that respects hydraulic monotonicity. Deep learning 
approaches have embraced this shift. Conditional Generative Adversarial Networks (cGANs), 
such as floodGAN and cGAN-Flood, generate high-resolution flood maps from rainfall fields 
orders of magnitude faster than traditional models, even generalizing to unseen catchments with 
meter-scale accuracy [25, 26]. However, such models are not explicitly designed to generate 
intermediate RP-FIMs and may fail to preserve the physical structure of flood extents. 
Addressing this gap, the present study introduces a hybrid framework that couples a ResUNet-
based semantic segmentation model [23, 26] with deformation-informed warping. This 
architecture incorporates attention mechanisms [27] and geometric constraints, enabling the 
generation of intermediate FIMs e.g., 3- and 4-year RP events from PC 2- and 5-year RP FIMs. 
The resulting outputs, in standard raster format, can be seamlessly processed by tools like 
FwDET-GEE for depth estimation and subsequent discharge computation, offering a scalable, 
computationally efficient alternative to exhaustive simulations. Despite widespread use of linear 
interpolation between pre-canned FIMs, limited research has formally assessed their accuracy or 
defined the conditions under which they perform best. Prior studies have emphasized the need 
for comprehensive evaluations of these libraries [28]. To that end, this study benchmarks HEC-
RAS-based pre-simulated FIMs against OWP HAND-FIMs using Remote Sensing (RS)-derived 
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flood extents. Additionally, it introduces and evaluates hybrid DL-based proof of concept as an 
alternative to simple interpolation, aiming to improve the physical realism and reliability of real-
time flood mapping. 

4. Methodology 

4.1. Study Area and Data Resources 

The case studies used to evaluate the FIM prediction techniques are located in southeastern 
Texas, encompassing several watersheds within the state boundaries (Figure 1). These 
watersheds span across regions near major cities such as Houston and Austin, and represent 
diverse hydrological and land use characteristics, including both urbanized and rural landscapes. 
Multiple Areas of Interest (AOIs) were delineated within the study domain to examine flood 
behavior, watershed structure, and hydrological responses. The detailed subfigures (a–c) show 
the distribution and spatial context of each AOI within the corresponding watershed in (d) 
CONUS. (a) and (c) are used in evaluation, and (b) is used in both evaluation and deep learning 
gap-filling. This study area was selected for its varied topography, land cover, and historical flood 
vulnerability. The data and models developed in this region aim to support hydrological analysis, 
flood mapping, and data-driven prediction efforts using remote sensing and machine learning 
approaches. PlanetScope imagery from Planet’s smallsat constellation was acquired via NASA’s 
Commercial Smallsat Data Acquisition (CSDA) Program for flood events cataloged in the event 
repository, providing 3-m spatial resolution imagery with a daily revisit time [29]. The data are 
orthorectified, radiometrically corrected, and terrain-adjusted multispectral products. Cloud- and 
shadow-contaminated pixels are excluded from the analysis. Four-band analytic imagery is used, 
composed of blue, green, red, and near infrared (NIR). Sentinel-1 [30] and NOAA Emergency 
Response Imagery [31] are also used.  
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Figure 1. The study area locations of (a) Lower Brazos (12030105) and San Bernard (12030106), (b) Lower 
Colorado (12090301), and (c) San Jacinto River (12040101) and West Fork San Jacinto (12040102) of (d) 

CONUS. 

4.2. Remote Sensing-Based Benchmarking 

To generate a remote sensing (RS)-based benchmark, a comprehensive Flood Inundation 
Benchmark Event Repository (FIBER) was developed by aggregating data from multiple 
established sources. Flood event records were drawn from the Dartmouth Flood Observatory 
(DFO) Global Archive, which catalogs large flood events globally from 1985 onward, with a 
focus on post-2013 events within the CONUS region. General flood locations were obtained 
from the RAdar Produced Inundation Diary (RAPID), which provides high-resolution (but low 
accuracy) flood maps across the U.S. from 2016 to 2019 [32]. Additionally, historical storm and 
precipitation records from the NOAA Storm Events Database (1950–2025) were used to link 
flood events with corresponding atmospheric drivers. Through a series of filtering, validation, 
and curation steps, these sources were consolidated into FIBER, which serves as the 
authoritative benchmark for assessing the spatial accuracy of flood inundation products. FIMs 
derived from remote sensing (RS-FIMs) were produced using high-resolution optical imagery. 
Initial water classifications were performed by applying the Otsu thresholding method [33] to 
the near-infrared (NIR) band and comparing the results to those obtained using the Normalized 
Difference Water Index (NDWI); the delineations from the NIR band were ultimately selected 
due to better performance. To reduce misclassifications caused by small land features, a 
supervised classification model was employed to refine the initial water masks. Subsequently, the 
identified flood regions served as seed areas for the spatial expansion of the inundation extent. 
This expansion was informed by both global water level observations and terrain constraints 
derived from a high-resolution digital elevation model. A hydrologically guided region-growing 
algorithm, as described in [34], was applied to improve detection in regions where floodwaters 
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were likely present but visually obscured in the imagery, such as beneath forest canopies or urban 
infrastructure. The final RS-FIMs underwent visual inspection and were evaluated for hydro-
morphological coherence to assess the reliability of the delineated flood extents. 

 

4.3. Determining Event Return Period 

USGS streamflow gauges (site a: 08062500, site b: 08161000, site c: 08068090) located near the 
downstream end of the inundated area were used as the primary source for determining event 
RP. However, in the majority of the benchmarks these downstream gauges were situated on 
lakes or following a dam. As a result, these gauges cannot accurately capture the true flood 
dynamics. In these cases, an upstream gauge along the main river channel was selected as an 
alternative source of observed data. Using the peak discharge data from these identified USGS 
gauges, the RP was computed through the Expected Moments Algorithm (EMA) following the 
procedures outlined in Bulletin 17C of the U.S. Army Corps of Engineers’ HEC-SSP software. 
In the absence of USGS gauge nearby (either downstream or upstream), the analysis relied on 
discharge data from NWM. For events prior to January 2023, discharge time series were obtained 
from NWMv3 retrospective simulations. For events beyond this period, short-range NWM 
forecasts were used instead. In both cases, the peak discharge at the most downstream NWM 
reach of the inundated area was extracted and compared against its corresponding frequency 
distribution to determine the event RP. 

 

4.4. Generation of HAND, PC and R1D-FIMs 

To generate the HAND-FIMs we utilized the open-source fimserve package [35]. This package 
generates operational FIMs based on the HAND method developed by NOAA's OWP. HAND-
FIM generation (Figure 2) begins with identifying the HUC code, event start and end date 
corresponding to each benchmark flood event. The benchmark event’s image acquisition time, 
hereafter referred to as the Benchmark Timestamp (BMT), serves as the initial reference for 
HAND-FIM generation. However, NWM simulations, especially retrospective runs, are known 
to underpredict or overpredict streamflow when compared to observed USGS discharge values. 
To address this bias, we employed a simplistic temporal alignment strategy to synchronize 
modeled and observed conditions.  
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Figure 2. Schematic diagram workflow for generating and evaluating three types of FIMs: HAND-FIMs (HAND), 
Ripple1D event-based FIMs (R1D-FIMs), and pre-canned FIMs (PC-FIMs) 

 

Specifically, the discharge from the USGS gaging station used for RP calculation was compared 
against the NWM discharge data at its corresponding stream feature_id. If the observed BMT 
discharge fell within the NWM discharge range, we selected the timestamp where the NWM 
discharge most closely matched the USGS value. This selection was done preferentially on the 
rising or falling limb of the hydrograph, depending on which stage the BMT aligned within the 
observed USGS hydrograph. However, if the USGS discharge exceeded the maximum NWM 
discharge within the event period, the timestamp corresponding to the NWM peak discharge 
was selected for HAND-FIM generation. In cases where no USGS gauge was available, the BMT 
was used directly without adjustment. This final (adjusted or default) timestamp was then used 
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to extract NWM discharge for the entire HUC, serving as input for both the HAND-FIM and 
the target discharge for R1D-FIM generation. 

The R1D-FIM generation (Figure 2) is based on a set of start reach(es), and a target flow file. 
For each start reach, the framework identifies the closest matching rating curve from a 
precomputed rating curve database by comparing the input flow to available scenarios. The 
resulting stage is then used as a boundary condition for the next upstream reach, combined with 
the corresponding flow from the target file. This process is repeated iteratively, selecting closest 
Synthetic Rating Curve (SRC) discharge at each step based on updated boundary conditions, and 
progresses upstream until the full network extent is covered. In our research, the adjusted or 
default NWM discharge at the BMT was used to define the target flow input for generating 
event-specific R1D-FIMs. The discrete pre-canned FIMs corresponding to 2-, 5-, 10-, 25-, and 
50-year RP were provided by Dewberry Inc. (https://www.dewberry.com/), the developers of 
the R1D framework. These FIMs were generated using representative discharges for each return 
period scenario. Based on the RP determined for each benchmark event, we selected the two 
closest PC-FIMs that represent the upper [PC(UB)] and lower [PC(LB)] RPs for each case study. 

 

4.5. Generation of AOIs 

Within the PC and R1D-FIMs we had several missing sub-reach models or regions with lakes or 
artificial reservoirs. These missing FIM sections were sparsely distributed across lower-order 
streams (<3). However, several higher-order streams (e.g., orders 5–8) exhibited gaps, often 
accounting for a substantial portion of the FIM coverage. Therefore, when delineating the AOIs, 
it was important to account for these discontinuities. Including all missing PC-FIM regions 
would inadvertently favor the HAND-FIM model, which offers near-complete coverage across 
stream networks. Selecting AOIs with extensive discontinuities in the PC-FIM would thus create 
an imbalanced comparison. On the other hand, restricting the analysis to regions covered solely 
by PC models would introduce bias in their favor, as it disregards areas where these pre-canned 
sub-models are absent. While such an approach enables a more controlled comparison of model 
accuracy between the high-fidelity PC-FIMs and the lower-fidelity HAND-FIMs, it 
simultaneously conceals a key limitation of the pre-canned framework, its limited spatial 
coverage. 

Therefore, to ensure fair tradeoff analysis, two sets of AOIs were created for a single FIM region. 
The first one represents a broader area delineated based on the extent of benchmark inundation 
while ignoring the spatial discontinuities of pre-canned models. In defining acceptable 
discontinuities, only missing pre-canned FIM segments associated with order 2 or lower were 
retained within an AOI. These AOIs were standardized using a Convex Hull (CH) approach to 
define a minimum bounding polygon covering the inundated pixels. This method allows for a 
uniform and objective delineation of AOIs based on benchmark flood extent. They served as 
the primary spatial reference for identifying regions with continuous pre-canned model coverage, 
predominantly along streams of order 5 and above. Within each primary AOI, a second AOI is 
delineated by intersecting the 100yr RP PC-FIM wet cells with the benchmark raster inundation 
extent. Since the full lateral extent of the original HEC-RAS sub-model is unknown, a 100 m 
buffer was applied to approximate the dry floodplain and infer the model’s operational boundary.  
These secondary AOIs provide a comparison that reduces biases due to gaps in the HEC-RAS 
simulations, allowing us to compare the differences in the FIM forecasting approaches (dynamic, 
pre-canned and hybrid) rather than specific modeling implementations. 

 

4.6. Synthesizing Intermediate FIMs 
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This study proposes a Deep Learning (DL)-based framework to generate intermediate FIMs 
between existing benchmark scenarios defined by different RPs. The goal is to produce realistic 
flood extents for intervals not directly available in traditional flood mapping products. The 
approach integrates spatial transformation techniques with a customized neural network 
architecture capable of learning from known flood scenarios and inferring intermediate extents. 
Known flood maps were preprocessed to ensure consistency in spatial resolution and alignment 
and then converted into binary representations suitable for model training. To manage high-
resolution inputs, a patch-based processing strategy was used, preserving spatial fidelity while 
optimizing memory use during training. The DL model combines semantic segmentation with 
spatial deformation priors derived from observed flood extents. A neural network with encoder-
decoder architecture and enhanced feature selection modules was trained to learn flood extent 
patterns between pairs of low and high RPs. The training process utilized displacement fields 
computed between these scenarios to provide geometric guidance, helping the model predict 
how flood boundaries evolve. Intermediate flood extents were then generated at variable 
resolution depending on user-defined interpolation controls. Model training was conducted with 
a combination of loss functions to ensure balanced learning across diverse flood patterns and 
was optimized using standard techniques for segmentation tasks. Performance evaluation relies 
on established classification metrics that quantify both detection accuracy and false prediction 
rates. The predicted flood extents were further translated into hydrologic variables such as depth 
and discharge. Water depths were estimated using a terrain-differencing method, and discharge 
was calculated by matching predicted depths with synthetic or empirical rating curve 
relationships, using parameters from existing hydrologic databases. This end-to-end process 
enables enhanced temporal resolution in flood mapping and supports hydrologically meaningful 
decision-making, while the technical components remain abstracted to limit direct 
reproducibility. 

 

4.7. FIM Evaluation 

FIM evaluation was conducted using the open-source FIM Evaluation Framework (FIMeval) 
[36]. It evaluates the FIMs based on a pixel-to-pixel comparison between Model-predicted and 
Benchmark FIMs (M-FIM and B-FIM). First the M- and B-FIM are converted into binary raster 
representing flooded (1) and non-flooded (0) pixels. Next, permanent water bodies (PWBs) are 
removed from the binary raster to isolate and evaluate only the flood-affected pixels. Finally, 
binary B-FIM and M-FIM are compared using map algebra to produce a confusion matrix raster 
with each pixel classified as True Positive (TP), False Positive (FP), True Negative (TN), and 
False Negative (FN). Based on the pixel classifications, five performance metrics are calculated 
– F1 Score, Critical Success Index (CSI), Probability of Detection (POD), Accuracy, and 
Precision. The F1 Score is the harmonic means of Precision and Sensitivity, which is useful for 
evaluating performance on imbalanced data in this case flooded and non-flooded pixel ratio. 
POD measures flood detection without penalizing false alarms, while CSI measures correctly 
predicted floods while penalizing misses and false alarms. Accuracy is the proportion of correctly 
classified pixels (both flood and dry). Lastly, Precision is the fraction of predicted flood pixels 
that are truly flooded in the B-FIM raster. 

 

5. Results 

Our approach of presenting the results include the producing of 4 contingency maps and 
performance metrics: (i)HAND-; (ii)PC(LB)-, (iii) PC(UB)-, and the event-based R1D-FIM, via 
two different approaches for the map boundaries (Convex Hull at the top panel and traced to 



Water Prediction Innovators Summer Institute 2025   

16 

 

the Pre-canned boundaries with a 100 meter buffer on the lower panel), as shown in Figure 3 
and Figure 4. 

 

Figure 3. Contingency maps for the four compared models for low RP event (a-h), intermediate RP event (i-p), and high 
RP event (q-x) 

 

The East Fork Trinity River has a long history of flooding, with major events impacting Dallas 
and Fort Worth, particularly in the early 20th century. An event of the magnitude of a 3-yr RP 
flood for the Trinity River was used to extract a case study within the East Fork Trinity River, 
representing a low RP event. The contingency maps (Figure 3a-d), generated using the Convex 
Hull method, indicate that the event-based R1D approach statistically matches the PC(LB) in 
terms of accuracy (0.72) as the models with the top performance (Figure 3a & 4a), slightly 
outperforming the accuracies of PC(UB) and HAND (0.69 and 0.68, respectively). It is worth 
mentioning that the identical performance of the event-based R1D and the PC(LB) in Figure 4a 
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is due to the limited discrete discharge simulation within the R1D library. When looking at the 
traced-to-pre-canned AOI approach (Figure 3e-h), a comparable performance pattern emerges 
across all four models, with a slight reduction within the accuracy magnitude. This traced-to-pre-
canned approach isolates differences in model fidelity, allowing the performance assessment to 
focus solely on the quality of inundation predictions rather than on discrepancies in model 
coverage. 

 

Figure 4. Radar charts for the performance metrics of the 4 explored models for 3 ranges of return period (a) low RP 
(b)intermediate RP (c) high RP for the Convex Hull method (top panel) and traced to pre-canned FIM method (bottom 

panel) 

 

For the intermediate RP event, we have the Lower Colorado-Cummins watershed, where both 
severe droughts as well as extreme precipitation events have been taking place more frequently 
in recent years. The captured event, which occurred on August 29th, 2017, represents a 42-yr RP 
flood. The contingency maps produced through the Convex Hull method (Figure 3i-l), show 
that HAND underpredicts, with significant areas of flood underprediction along the main stem 
of the river, with an accuracy of 0.865. The PC-FIMs seem to outperform all other methods, 
with the accuracies of PC(UB) and PC(LB) almost identical (0.917 and 0.915, respectively). 
Although the event-based R1D-FIM performs relatively better than HAND (Figure 4b), it is 
still outperformed by the PC approach, despite having a similar performance at the downstream 
of the area of interest. Looking into the traced-to-pre-canned AOI approach (Figure 3m-p), a 
similar pattern of performance is repeated across the four models. This similarity of performance 
is portrayed within the radar plot in Figure 4b, where the shape of the radar and order of models 
are almost identical. Interestingly, when looking at the precision, HAND (0.897) outperforms all 
other models (0.776, 0.739, and 0.868) due to the underprediction of flood inundation extent 
within the lower order streams, which is due to bias in the NWM discharge prediction. 

The West Fork of the San Jacinto River watershed has experienced significant flooding, 
particularly during Hurricane Harvey in 2017 and the October 1994 flood. The 2017 event 
produced the highest water levels ever recorded on the West Fork, surpassing the previous 
record set in 1994. The estimated 62-yr RP flood event, which took place on August 27th, 2017, 
is utilized here as our case study for the high RP event. The contingency maps generated (Figure 
3q-x) using the Convex Hull method indicate that the PC(UB) and PC(LB) models have the 
highest accuracy (0.602 and 0.549, respectively) while HAND (0.468) slightly outperforms the 



Water Prediction Innovators Summer Institute 2025   

18 

 

event-based R1D (0.452). Although both HAND and event-based R1D underpredict inundation 
extents along the main channel and particularly the downstream areas, HAND still outperforms 
the event-based R1D due to the discontinuity within the R1D sub-model library that results in 
leaving out an entire tributary out of the flood mapping at the upstream region. However, Figure 
4f shows that the penalization of discontinuity within the R1D is eliminated when using the 
traced-to-pre-canned AOI approach, which restores the capabilities of R1D as a more accurate 
model than HAND. It is worth noting that the precision metric is almost identical for all models 
due to the disproportionality of wet to dry pixels within the benchmark, resulting from the 
severity of the high RP event. 

 

5.1. Deep Learning Derived Intermediate FIMs 

Figure 5 summarizes the evaluation of the DL-derived FIMs. Figure (a) demonstrates 
Discharge–return period curves for selected NWM reaches. These discharge values are 
computed for generated interpolated flood extents via FIM-BridgeNet. Upper curves represent 
mainstem reaches with larger flows, while lower ones correspond to smaller tributaries. Figure 
(b) shows the performance of the hybrid DL model across RP pairs, that 5–10 yr interpolation 
yields the most consistent metrics. These metrics were calculated for the hybrid DL model-
projected upper threshold RP FIM against the true PC-FIMs for each interval brackets. The 25–
50 yr pair achieves higher POD and F1, indicating better detection but slightly reduced precision. 
The 50–100 yr pair peaks in precision but dips in CSI. Minor variations in a second 5–10 yr run 
reflect model randomness. 

 

 

Figure 5. Evaluation of Synthetic FIMs Discharges (a) and Deep Learning Model Performance (b) DL Model 
Performance 

 

Figure 6 demonstrates the capability of FIM-BridgeNet to produce intermediate FIMs for 
return periods (RPs) not included in the original inputs. As illustrated in Figures 6a-e, the 
generated maps for the 3-, 15-, 20-, 30-, and 70-year RP events, respectively, exhibit a clear and 
continuous spatial expansion of inundation areas with increasing RP. These outputs visually 
confirm that the model captures the expected progression in flood extent without introducing 
abrupt spatial artifacts between the known intervals. 
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Figure 6. Intermediate flood inundation maps generated by FIM-BridgeNet for return periods of (a) 3-year, (b) 15-year, 
(c) 20-year, (d) 30-year, and (e) 70-year. These maps fill the temporal gaps between standard pre-canned intervals, 

capturing smooth spatial progression of flood extent with increasing magnitude. 

 

5.2. Study Limitations 

Several limitations affected the scope and generalizability of this study. Despite using a structured 
evaluation framework, analysis was constrained by limited benchmark datasets, sparse PC-FIM 
coverage, and a selected set of RP (3.5-, 37-, and 64-year), which restricted flood event diversity. 
Spatial discontinuities in PC-FIMs and their focus on higher-order streams limited consistent 
comparisons across sites and hindered evaluation in smaller tributaries, especially against 
HAND-FIMs. Additionally, uncertainty in NWM discharge inputs introduced bias into HAND 
and R1D performance metrics, with only basic temporal adjustments applied. From a 
computational standpoint, GPU memory constraints required splitting the study area and 
processing return-period pairs in parallel across multiple jobs. Input rasters were tiled into small 
patches for efficient training, validation, and testing. The hybrid ResUNet model, with attention 
and optical flow warping, increased runtime to ~23 hours due to deeper architecture and 
complex design. Hyperparameter tuning was necessary to balance warp strength and learning 
rate. Inference remained the most resource-intensive step, with sliding window predictions 
consuming substantial GPU memory despite pipeline-level parallelization. 

 

6. Conclusion 

This study analyzed the performance of multiple flood inundation mapping (FIM) approaches, 
including HAND-FIMs, pre-canned (PC) FIM libraries, and event-based Ripple1D (R1D) FIMs. 
Our results demonstrate considerable variability with an overall greater accuracy by PC-FIMs 
across return period (RP) ranges, followed by R1D-FIMs. HAND-FIMs consistently 
underpredicted due to limitations in NWM streamflow estimates and spatial aggregation across 
hydrologic units. Given the aforedescribed limitations in the analysis and relatively small number 
of case studies, we cannot conclude a consistent advantage of any of the FIM prediction 
approaches.  To address the coarse RP intervals of PC-FIMs, we introduced FIM-BridgeNet, a 
hybrid deep learning model combining an attention ResUNet with optical flow warping, to 
generate intermediate flood extents. These outputs were post-processed into water depth and 
discharge using FwDET and NWM-based rating curves. The model demonstrated robust spatial 
continuity and accuracy across low, intermediate, and high RP ranges, supporting its value as a 
scalable solution for intermediate FIM generation. Future work will focus on extending 
benchmark coverage and improving RP diversity. A bidirectional DL + image warping 
framework with consistency-based loss will be developed to refine predictions across RP triplets. 
This will improve model scalability and computational efficiency, supporting large-scale 
implementation and a future methodological publication. 
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Abstract: This technical report introduces a novel deep learning approach for predicting surface 
runoff from distributed catchments. We developed a distribution-based loss function that 
utilizes probabilistic scoring rules to avoid explicit physics-based routing during training. A single 
long short-term memory model processes both static and dynamic inputs, trained on diverse 
gauged watersheds using a defined spatiotemporal batching method. The loss quantifies 
agreement between observed downstream streamflow and predicted upstream runoff 
distributions. We introduced an innovative machine learning based method for selecting the 
optimal spatiotemporal modeling strategy to capture hydrological signatures of basins. This 
framework efficiently transfers spatiotemporal information from gauged sites to contributing 
catchments, providing an operationally viable pathway for calibrating hydrological predictions 
within the Next Generation Water Observing System in the National Water Model. 

 

 

1. Motivation 

Accurate prediction of surface runoff from spatially distributed catchments is a basis of effective 

water‐resources management and flood risk mitigation. Surface runoff integrates complex 
interactions among precipitation, land cover, soil properties, and topography, resulting in highly 

nonlinear and site‐specific responses. Deep learning models, particularly Long Short-Term 
Memory (LSTM) networks, have emerged as powerful alternatives for modeling hydrological 
processes. By ingesting time series of meteorological forcings alongside static catchment 
attributes, such architectures can learn implicit representations of soil moisture dynamics, 
infiltration, and storage directly from data. Studies (e.g., [1], [2]) demonstrated that an LSTM 
trained on multiple basins achieves higher median Nash–Sutcliffe efficiencies than traditional 
conceptual models. Also, transfer learning between catchments can reduce the need for site-

specific calibration while maintaining forecast accuracy [3], [4]. 

To ensure that the model not only fits historical observations but also generalizes new 
conditions. We will evaluate its performance using metrics that assess both accuracy and 
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consistency across the entire spatial domain, as well as considering a Rising and Falling Limb 
(RFL), as a new loss function, to capture the hydrologic signatures, following the methods of 
previous research [17]. Such a framework can transfer information effectively from 
subcatchments to neighboring catchments, ultimately supporting more informed flood 
forecasting and watershed planning without the prohibitive calibration effort of conventional 
approaches to feed into the NextGen framework and make it generalizable in hydrological 
modeling. 

 

2. Objectives and Scope 

The main objective is to develop an LSTM framework that predicts daily and hourly surface 
runoff simultaneously across multiple subcatchments converging at a common downstream 
catchment output. By sharing spatial training model parameters across all contributing 
catchments, the network controls inter-catchment similarities in hydrologic signatures. This 
multi-catchment training pattern reduces calibration difficulty and enables robust predictions 
that consider the upstream contribution of catchments as a whole system. 

 

2.1. LSTM Model Performance for Streamflow Modeling with NextGen  

We evaluated the proposed LSTM model based on the new training method and various loss 
functions. The goal of this step is to make sure that the model can capture the streamflow and 
produce reliable results by considering various measures of success (e.g., R²). Then, LSTM was 

integrated into the NextGen framework to assess its performance in some selected basins. The goal 

is to utilize the LSTM model for calibration of the Next Generation Water Observing System 
(NextGen) Framework to make it applicable in diverse hydrological conditions. 

 

2.2. Hydrologic Signature Analysis 

Another objective of this project is to develop predictions of streamflow based on the quantified 
hydrologic signatures. Hydrologic signatures, such as flashiness, baseflow index, and flow 
duration characteristics [5], provide insights into catchment behavior. This approach involves 
generating a range of possible hydrologic signatures, rather than a single deterministic streamflow 
value, to better capture the inherent variability and catchment behavior in hydrological modeling. 
Hydrologic signatures will support more informed water resource management and decision-
making by providing a comprehensive understanding behavior of a catchment even for future 
scenarios. 

 

3. Previous Studies 

We used the NextGen framework and built upon the project by the 2024 Summer Institute team, 
named “Probabilistic Streamflow Prediction Using the Model-Agnostic NextGen Framework” 
[6]. While their study focused on the Conceptual Functional Equivalent (CFE) model approach, 
we specifically investigated appropriate spatiotemporal batching methods and ensemble sizes in 
the training dataset for each batch, and developed a new probabilistic scoring rule loss function, 
RFL, to capture hydrologic signatures in our simulation.  
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4. Methodology  

We trained a single LSTM model to capture the relationship between area-normalized flow and 
a concatenated vector of inputs containing (m) static attributes (θ) of the unique hydrologic 
response unit and (n) dynamic forcing variables (xn): 

𝑋𝑡 = [𝜃1, 𝜃2, … , 𝜃𝑚 , 𝑥1,𝑡, 𝑥2,𝑡 , … . , 𝑥𝑛,𝑡]   (1) 

We used backpropagation of a loss function to train the model to predict runoff at a hydrologic 

response unit (e.g., 𝑦𝑐 at a contributing catchment) from the input vector: 

𝑦𝑐 = 𝑓(𝑋𝑡)                                                              (2) 

Some upstream catchments contributed to predicting streamflow at the gauged location 𝑞𝑔. 

Batch Definition: In deep learning, the model is trained with batches (𝑁𝑏) which are a subset of 
the total number of data samples (N). A batch (B) consists of a subset of data points: 

B = {𝑋𝑡1
, 𝑋𝑡2

, … , 𝑋𝑡𝑏
}       (3) 

where 𝑡1, 𝑡2, . . ., 𝑡𝑏 are consecutive time steps, and b is the batch size (usually several timesteps 
but can also be split by watersheds). 

The total dataset consists of all time steps for all contributing catchments: 

D = {𝑋𝑡| 𝑡 ∈  {1, 2, . . . , 𝑇 }}     (4) 

where T is the total number of time steps for all watersheds. 

Batch Iteration and Epochs: During training, the model processes the dataset in smaller subsets 
called batches, as using the entire dataset at once would be computationally expensive. Each 
batch contains data from a subset of the total time steps (T) for all gauged watersheds, and the 
total number of batches in one epoch is: 

𝑁𝑏=⌈T/b⌉        (5) 

where 𝑁𝑏 is the total number of batches, b is the batch size (number of data points in each 

batch), and ⌈·⌉ denotes the ceiling function. For a watershed dataset, the total number of time 
steps (T) is the sum of the time steps for all gauged watersheds: 

T= ∑𝐺 𝑇𝐺        (6) 

where G is the total number of gauged watersheds, and 𝑇𝐺 is the number of time steps for a 
single gauged watershed. The batch size (b) is defined as: 

b= 𝐺𝑏×𝑇𝑏        (7) 
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where 𝐺𝑏 is the number of gauged watersheds included in the batch, and 𝑇𝑏 is the number of 
time steps for each gauged watershed in the batch. 

This batching approach is implemented for computationally manageable subsets of the data, 
while still learning from the whole dataset. It also allows the model to generalize across diverse 
watersheds with varying numbers of gauged locations and time steps. We need to ensure that 
the scoring rule-based loss function can work with batches. For modeling, the size of available 
data should be considered for training the model as well. We will begin to do spatiotemporal 
batching based on a variety of catchment categories in order to include every single catchment 
cluster in every batch. The clustering of all used Camel catchments is represented in Figure 1.  

 

Figure 1. (Left) Graphical clustered CAMELS catchments in the U.S. into ten clusters based on hydrological 

signatures with high spatial predictability. The clustering reveals that catchments with similar hydrological behavior (color 

coded) often exist across different regions. This highlights that while climate is a dominant driver overall, combinations of 

other catchment attributes can produce similar hydrological responses in geographically separate areas [16]. (Right) 

Clustering catchments for the new sampling method for the selected CAMELS basins 

Scoring Rule as a Loss Function: The scoring rule S(Q, P) was designed to evaluate the model’s 
performance across the spatial and temporal distributions of watersheds and their upstream 
contributing catchments. Backpropagation was used to optimize the weights of the model by 
the scoring rule. 

L(B)= S(𝑄𝐵 , 𝑃𝐵)       (8) 

where 𝑄𝐵  is observed distribution of downstream streamflow for all gauged watersheds in the 

batch, accounting for lag 𝜏𝑔. 𝑃𝐵 is predicted distribution of runoff contributions from all 

upstream catchments in the batch, accounting for lag 𝜏𝑐. S(𝑄𝐵 , 𝑃𝐵) is a scoring rule quantifying 

the agreement between the observed (𝑄𝐵) and predicted (𝑃𝐵) batch-level distributions. 

● Observed Distribution (𝑄𝐵): The observed downstream distribution was constructed 

by aggregating the streamflow from all gauged watersheds (𝐺𝑏) in the batch over time: 

𝑄𝐵  = p(𝑦𝑔 | g ∈ {1, . . . , 𝐺𝑏}, t ∈ B, 𝜏𝑔)    (9) 

where 𝑦𝑔 is observed downstream streamflow at gauged watershed g, g ∈ {1, . . . , 𝐺𝑏} spans all 

gauged watersheds in the batch, t ∈ B specifies the time steps included in the batch and 𝜏𝑔 

represents the time lag for each gauged watershed. 
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● Predicted Distribution (𝑃𝐵): The predicted upstream distribution was generated by 
aggregating the runoff contributions from all contributing catchments (c) for each gauged 
watershed (g): 

𝑃𝐵 = p(f(𝑥𝑐) | c ∈ g, g ∈ {1, . . . , 𝐺𝑏}, t ∈ B, 𝜏𝑐)   (10) 

where p(f(𝑥𝑐)) represents the distribution of predictions for upstream catchments c of g gauged 

watersheds in the batch (𝐺𝑏). t ∈ B denotes the time steps in the batch and 𝜏𝑐 represents the 
maximum lag for upstream runoff predictions.  

The model was trained by cycling through many different gauged watersheds, with different numbers 

of contributing catchments, ranging from 10 to about 1000, an example is depicted in Figure 2.  

 

 

Figure 2. Graphical depiction of a gauged watershed(green) with contributing upstream catchments (red) 

 

We also used two developed loss functions for our LSTM modeling including Flow Duration 

Curve (FDC) and Rising Falling Limbs (RFL). The novel FDC divergence score, 𝑑𝐹𝐷𝐶(𝑃, 𝑄) is 
a powerful tool for evaluating hydrological models by comparing the entire distribution of 
simulated and observed streamflow [7-9]. While the theoretical formulation of this score is based 
on an integral, for practical application with real-world time series data, the formulation is 
revisited as follows: 

𝑑𝐹𝐷𝐶(𝑃, 𝑄) =
1

𝑛2
∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

|𝑦𝑖 − 𝜔𝑗|

−
1

2

1

𝑛2
∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

{|𝑦𝑖 − 𝑦𝑗| + |𝜔𝑖 − 𝜔𝑗|}                     (11)  

 

Whereas 𝑛: represents the total number of data points (e.g., days) in both the observed and 

simulated streamflow time series. 𝑦𝑖: denotes the 𝑖𝑡ℎsimulated streamflow value from the output 

of the model. 𝜔𝑗: denotes the 𝑗𝑡ℎ observed streamflow value from the real-world data.|𝑦𝑖 − 𝜔𝑗|: 
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This term calculates the absolute difference between each simulated and observed value. 

∑𝑛
𝑖=1 ∑𝑛

𝑗=1 |𝑦𝑖 − 𝜔𝑗|: This difference is computed for every possible pair of simulated and 

observed values. This formulation is based on a Monte Carlo estimate derived from a 
decomposition of the FDC divergence, which itself is equivalent to the Continuous Ranked 
Probability Score (CRPS) divergence [9]. 

To enhance the distribution-based scoring rules loss function is based on the “Rising/Falling 
Limbs” method, which specifically analyzes the dynamic characteristics of hydrographs within 
each batch. This method incorporates the concept of hydrological signatures derived from the 
rate of change in streamflow, which is indicative of basin response. For each hydrograph within 
a given batch, the process begins by calculating the slope for each discrete time interval. This 
slope represents the instantaneous rate of change of discharge with respect to time. So, a positive 
dQ/dt signifies a rising limb, indicating increasing flow, while a negative dQ/dt points to a falling 
limb with decreasing flow (eq. 12). Once these dQ/dt values are computed for all time intervals 
across all hydrographs in a batch, they form a new dataset. To create a distribution of these 
slopes, we follow a process conceptually like FDC but applied to the rates of change instead of 
discharge magnitudes. By transforming the hydrograph's temporal behavior into a distribution 
of its rates of change, the scoring rule was then used to quantify the agreement between the 
observed dQ/dt distribution and the predicted dQ/dt distribution. 

 

𝑑𝑅𝐹𝐿 (
𝜕𝑄𝑆𝐼𝑀

𝜕𝑡
,
𝜕𝑄𝑂𝐵𝑆

𝜕𝑡
 )

=
1

𝑛2
∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

|𝑞𝑖 − 𝑧𝑗|

−
1

2

1

𝑛2
∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

{|𝑞𝑖 − 𝑞𝑗| + |𝑧𝑖 − 𝑧𝑗|}                      (12)  

Whereas 𝑛:  represents the total number of data points (e.g., days divided into time intervals) in 

both the observed and simulated streamflow time series. 𝑞𝑖: denotes the 𝑖𝑡ℎ simulated 

streamflow rate over the specific time interval from the output of the model. 𝑧𝑖: denotes the 𝑖𝑡ℎ 

observed streamflow rate over the specific time interval from the real-world data.|𝑞𝑖 − 𝑧𝑗|: This 

term calculates the absolute difference between each simulated and observed value derived from 

streamflow rates. ∑𝑛
𝑖=1 ∑𝑛

𝑗=1 |𝑞𝑖 − 𝑧𝑗|: This difference is computed for every possible pair 

of simulated and observed rates. This formulation is based on a Monte Carlo estimate derived 
from a decomposition of the FDC divergence, which itself is equivalent to the Continuous 
Ranked Probability Score (CRPS) divergence. 

 

4.1. The CAMELS observation data 

We used a dataset developed by Frame et al. [10], which includes 515 Catchment Attributes and 
Meteorology for Large-sample Studies (CAMELS) basins [11]. The dataset contains hourly and 
daily streamflow data from the United States Geological Survey (USGS) and forcing data (hourly 
total rainfall and potential evapotranspiration) from the National Land Data Assimilation System 
(NLDAS) for the CAMELS basins [12]. We further reduced the number of basins to 499 during 
model calibration based on the available data. CAMELS data include corresponding daily 
streamflow records from US Geological Survey (USGS) gauges and meteorological data. 
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4.2. The NOAA AORC forcing data 

For our hydrological simulations, the NOAA Analysis of Record for Calibration (AORC) 
Version 1.1 dataset was utilized, providing hourly meteorological variables. These essential 
inputs, incorporated directly into our deep learning model, comprise: Total Precipitation 
(APCP_surface), Air Temperature (TMP_2maboveground), Specific Humidity 
(SPFH_2maboveground), Downward LongWave Radiation Flux (DLWRF_surface), 
Downward Short-Wave Radiation Flux (DSWRF_surface), and Pressure (PRES_surface). The 
selection of AORC ensures access to a high-quality, consistent, and spatially extensive set of 
forcing variables, providing a robust foundation for training and evaluating our distributed deep 
learning watershed model. 

 

4.3. The NextGen Framework 

The Next Generation National Water Model Prototype Framework is a continental-scale 
modeling framework that makes it simple to incorporate cutting-edge research (the best models 
and modeling techniques). The Office of Water Prediction (OWP) launched the Next 
Generation Water Resources Modeling Framework, or NextGen, an interagency effort that 
allows for regionally customized model formulations and addresses the present NWM 
performance. This framework promotes model interoperability, standardizes data and setup 
workflows, and eases the evaluation of diverse modeling approaches, with the NextGen NWM 
representing a specific configuration within it [13]. The enforcement of this conceptual model, 
in conjunction with the Basic Model Interface [14], offers an open-source, standards-based 
framework that enables modeling approaches to be regionally tailored for streamflow generation 
processes [15]. 

 

4.4. Code development 

For this project, we developed our group’s GitHub repository, which stands out as a main 
achievement(https://github.com/NWC-CUAHSI-Summer-Institute/NeuralNgen/tree/main). 
The main goal of this repository is to keep all codes and updates to ensure the reproducibility of 
our processes for future CUAHSI Summer Institute fellows. Though it is not a step-by-step 
guide, it provides a comprehensive record of the obstacles we encountered, delivering key 
insights to update the experience for those who follow. 

 

4.5. Distribution-based training and testing splits 

We hypothesized that using train/test splits based on the distribution of basin attributes would 
lead to models with more reliable generalization. To test this, we compared the resulting 
performance distributions from our proposed batching method against a standard cross-
validation approach. The LSTM model was trained on 499 CAMELS basins; however, only a 
single catchment is presented here for demonstration. The training period spans 1999–2008, the 
validation period 1980–1989, and the testing period 2008–2014. Basins not used for training 
were reserved for validation and testing. 
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5. Results 

Figure 3 the uncertainty envelopes for the cumulative distributions of KGE scores from two 
methods of splitting training and testing data. The blue curve representing the distributed splits 
shows a trend towards better performance, but more importantly, its uncertainty envelope is 
much tighter than that of the standard method. Based on this visual result, we failed to reject the 
hypothesis that using train/test splits based on the distribution of basin attributes provides a 
more reliable generalization. 

 

 

Figure 3. Uncertainty envelopes of the empirical cumulative distribution functions (CDFs) for Kling-Gupta Efficiency 
(KGE) scores 

 

The results of a preliminary demonstration are shown in Figure 4 for NextGen on a sample site 
and in Figure 5 for comparing three methods for hydrologic signatures. 

 

Figure 4. NextGen and NWM simulated hydrograph at USGS gauge 01052500 

Figure 4 presents a time-series comparison of simulated and observed streamflow at USGS site 
01052500 by using hourly data and the RFL as the loss function in LSTM to be used for 
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NextGen. Overall, the NextGen model demonstrates a strong ability to capture the timing of 
hydrological events. The simulated flow rises in response to storm events at nearly the same time 
as the observed flow, indicating that the runoff generation processes are well-timed. Similarly, 
the representation of baseflow and the shape of the recession limbs following most peaks align 
reasonably well with the observed data, suggesting the model simulates periods between events 
effectively. However, NextGen’s primary weakness was the estimation of peak flow rates. 
Conversely, the model severely overestimates some events, generating a simulated peak that is 
more than double the corresponding observed flow. These errors in predicting the magnitude 
of high-flow events suggest that while the model is useful for capturing the general trend of the 
catchment behavior, it is not yet reliable for applications requiring accurate flood peak prediction 

for flood forecasting. Overall, NGEN offers better modeling of both peak and low‐flow 
dynamics, whereas the NWM provides a smoother hydrograph. These differences highlight areas 
for potential recalibration to improve NWM peak responsiveness and refine NGEN’s flood 

scaling to reduce its high‐flow bias. 

 

Figure 5. Performance comparison of the FDC , NSE and RFL loss functions using the Coefficient of Determination 
between observed and simulated hydrologic signatures 

An analysis of the FDC, NSE and RFL models is presented in Figure 5, revealing a critical 
performance of various hydrologic signatures. While all models demonstrate considerable 
strength in simulating metrics like q_mean and hfd_mean with high R² values, they share a 
significant weakness, which is also seen in conceptual models and the NWM [17]. All of them 
failed profoundly to perform on the slope_fdc (slope of the flow duration curve), again, similar 
to conceptual models and the NWM [17]. The highly negative R² values for this signature 
indicate that their predictions of flow variability are inadequate, and there is a need to train the 
model with more new weights and stations.  

Limitations of this work: While this study provides valuable insights, its conclusions should be 
considered in light of several limitations. First, the project was limited by significant time constraints, 
which narrowed the scope of our investigation and limited the number of simulations we could 
perform. This was compounded by the coding challenge inherent in translating our framework into 
a functional model; developing and debugging the necessary scripts was a time-intensive process. 
Furthermore, the theory's complexity required us to make certain simplifying assumptions to ensure 
the model was computationally feasible. Finally, a practical challenge was the process of running 
NextGen, our simulation platform. The high computational cost and long processing times for each 
simulation restricted our ability to conduct a more exhaustive sensitivity analysis across the entire 
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parameter space. Future research with dedicated computational resources and an extended timeline 
could build upon our work by addressing these constraints. 

 

6. Conclusion 

This work suggests a reliable approach that uses a distribution-based loss function to train a 
distributed deep learning watershed model. We present a computationally efficient method that 
moves data from gauged sites to contributing catchments without the need for explicit routing 
during training by utilizing probabilistic scoring rules.  This approach offers a useful route for 
operational runoff prediction within the NextGen system and advances deep learning 
applications in hydrology. 
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Abstract: Among natural disasters worldwide, flooding stands as one of the most catastrophic 
hazards. Changes in environmental conditions affect flood frequency and intensity. Relative 
occurrence of flood events is further intensified by anthropogenic land modifications, 
particularly urban expansion and the development of impermeable surfaces. Pluvial flooding 
poses challenges due to its site-specific characteristics and dynamic relationships between 
localized precipitation, topography, and subsurface elements. Currently, the Next Generation 
National Water Modeling Framework provides an operational framework for forecasting fluvial 
floods; however, its applicability at the local scale for pluvial flooding has not been thoroughly 
tested. This study assesses the NextGen's spatial reliability and predictive accuracy for localized 
flooding. The observed results show variation in Pluvial Flood Indices (PFI) across different 
catchment areas and land cover types. PFIs are found to be higher in small area catchments with 
urban land cover. The indices decrease as catchment area increases, and other land cover classes 
are included. However, PFIs suddenly increase when multiple urban areas are included in larger 
catchments. Observed findings provide benchmarks for pluvial flood detection within the 
NextGen framework, and the scalability of these indices across different catchment sizes and 
urban configurations will strengthen their operational utility. 

 

 

1. Motivation 

The motivation of this study is to address the missing pluvial component within the Next 
Generation National Water Resources Modeling Framework (NextGen) framework. A previous 
study demonstrates that pluvial flooding accounts for 87.1% of all flood-related claims examined 
within the National Flood Insurance Program (NFIP) database [1]. Pluvial flooding from intense 
rainfall overwhelms local drainage systems and poses a significant urban threat, particularly as 
human and environmental patterns continue to evolve. These localized events remain difficult 
to predict due to short lead times, complex topographic controls, and sub-catchment-scale 
variability [1]. NOAA's Next Generation Water Resources framework provides a scalable, 
flexible, and model-agnostic platform for large-scale hydrological applications using standardized 
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catchments of 3-15 km² [2]. In the present framework, NextGen focuses on stream-scale 
forecasting [3], but its ability to capture fine-scale urban flood signals is not clear. High-fidelity 
hydraulic models like Personal Computer Storm Water Management Model (PCSWMM) offer 
detailed urban simulations at block-scale resolution but are computationally intensive and 
typically limited to site-specific applications [4], [5].  

Currently, no defined indices exist for quantifying pluvial floods within the NOAA NextGen 
framework. The indices from this study will provide benchmarks for detecting pluvial flood 
signals from NextGen. This approach will assess the spatial reliability and detection capabilities 
of the NextGen framework for pluvial flooding. We expect the results will guide the 
development of hybrid modeling strategies for more effective early warning systems for localized 
pluvial flooding events. 

 

2. Objectives and Scope 

The primary objective of this project is to investigate the effectiveness of NextGen in the 
detection of pluvial flood signals at the current hydrofabric standard 
(https://mikejohnson51.github.io/hyAggregate/). We define and test standardized indices 
across different catchments. The variation of the defined indices is evaluated across catchment 
areas, dominant land cover, and forcing data such as precipitation. The research questions 
guiding this investigation include: 

a) To what extent can the NOAA NextGen-NWM framework be utilized to simulate and 

detect pluvial flooding events?  

b) How does the spatial discretization of the NextGen hydrofabric influence the accuracy 

and sensitivity of pluvial flood forecasting? 

By addressing these questions, the project aims to enhance the understanding of the application 
of NextGen’s models in the localized flood event detection. More specifically, the following 
research objectives are addressed 

RO1: We investigate the suitability of GIUH-derived runoff from CFE simulations within the 
NextGen framework for detecting pluvial flood signals at finer spatial resolutions. 

RO2: We develop an index-based methodological framework to quantify pluvial floods and 
analyze how land cover characteristics and spatial scales influence the variability of pluvial flood 
detection using these indices. 

 

3. Previous Studies 

The National Water Model (NWM) is a comprehensive hydrologic modeling framework that 
emerged from the development efforts of the joint OWP (Office of Water Prediction)-NCAR 
(National Center for Atmospheric Research) development team to provide continental-scale 
high-resolution water modeling capability  [6], [7]. The system uses the WRF-Hydro framework 
to integrate meteorological data and simulate water movement processes, including runoff, 
infiltration, groundwater flow, and streamflow across over 2.7 million stream reaches. Operating 
at high spatial resolution (1 km for land surface, 250 m for terrain routing) and providing 
forecasts from hourly to 30-day scales, the NWM combines land surface modeling, routing 
models, and real-time data assimilation to generate streamflow forecasts at the continental scale 
[8]. 
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Building upon the NWM foundation, the NextGen framework is a flexible, open-source, and 
standards-based platform operating at the intersection of hydrologic, computational, and data 
sciences [2], [6]. NextGen is built upon a spatially derived network of catchments and flow paths 
that divide the U.S. landscape and river systems into discrete computational units. Each of these 
computational units can independently run hydrologic and/or hydraulic models and 
communicate with neighboring elements. The modular structure allows NextGen to deliver a 
unified, model-agnostic hydrologic forecast across the United States, aligning with the objectives 
of OWP. The primary strength of NextGen lies in fluvial flooding forecasts [9], [10]. NextGen 
predicts floods caused by river and stream overflow through its catchment-based modeling 
approach and streamflow routing capabilities. However, the framework currently lacks a 
comprehensive approach for localized pluvial flood detection. Pluvial floods caused by intense 
rainfall overwhelming local drainage systems in urban and low-lying areas requires selective 
modeling techniques focused on surface water accumulation rather than river network routing. 

Indices and frameworks for assessing fluvial and coastal flood risk are well established and widely 
used in hazard mapping and risk assessment, such as the Federal Emergency Management 
Agency’s (FEMA) Special Flood Hazard Area (SFHA) maps in the United States. In contrast, 
tools and indices specifically developed for pluvial flooding have historically been limited, with 
traditional approaches focusing on riverine and coastal flooding due to their clearer boundaries 
and longer data records. However, there is a growing recognition of the need to systematically 
address pluvial flood hazard [11], [12]. For example, a recent study proposed a pluvial flood 
index (PFI) that integrates precipitation, hydrological, and hydrodynamic processes based on 
pluvial flood hazard areas (PFHA). While comprehensive, this approach can be time-intensive 
to implement [13]. To address this, our study introduces simpler and faster indices that can be 
efficiently derived within the NextGen modeling framework, facilitating broader application and 
timely assessment of pluvial flood risk. 

 

4. Methodology 

In this study, we adopted the methodological framework represented in Figure 1. We develop 
an operational framework that integrates the local storm reports, insurance data for isolating 
pluvial flood events, runs the NextGen Conceptual Functional Equivalent model for the selected 
events, and determines the pluvial events based on the indices developed. The following 
subsections describe the data preparation and determination of the pluvial indices in detail: 
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Figure 1. Methodological framework adopted for the study. Step-1 defines the preparation of pluvial datasets from multiple 
sources, Step-2 includes the setup for the NextGen CFE module and simulation in selected catchments, and final Step-3 
involves the visual verification and determination of volume and peak-based indices. 

 

4.1 Dataset 

4.1.1. Local Storm Reports  

The Local Storm Report (LSR) is a text-based product issued by the National Weather Service 
(NWS) that provides details on specific weather events, typically based on reports from external 
sources [14]. Covering the CONUS region from 2005 to 2024, this dataset includes more than 
2.8 million reported storm events. It encompasses over 50 types of storms, such as various forms 
of flooding, tornadoes, lightning, and hail. The data is gathered through a range of channels, 
including law enforcement, storm spotters, media, and the general public. While the initial 
information is collected at the Local Weather Forecast Offices, it is later processed, quality-
checked, and distributed in a standardized format for use by the public and decision-makers.  

To identify pluvial flood events, LSRs were initially filtered to include only event types most 
indicative of pluvial flooding, specifically focusing on “flash flood” incidents. We filtered 
approximately 98,000 reports, which were then screened geographically using FEMA’s X flood 
layer. This allowed us to focus on locations that fall outside the 100-year floodplain and are thus 
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more indicative of “true” pluvial flood occurrences. To enable spatial matching, census tract 
information was appended to each LSR event. 

 

4.1.2. National Flood Insurance Claims Dataset 

Flood insurance data were sourced from the Federal Insurance and Mitigation Administration 
(FIMA) National Flood Insurance Program (NFIP) Redacted Claims [15]. The NFIP Redacted 
Claims dataset covers over 2.5 million insurance claims dating back to 1970. For this analysis, 
we focused on over 189,000 claims filed between 2005 and 2021. The dataset provides important 
attributes such as date of loss, flood zone, census tract, building and contents coverage, and 
claim amount. The growing availability of NFIP claim records has made large-scale flood risk 
assessments increasingly feasible in the U.S. [1], [16]  

NFIP insurance claims were first filtered to include only those filed from 2005 onward. To focus 
on claims most likely associated with pluvial flooding, we further refined the dataset using 
FEMA’s X flood layer, which excludes properties located within the 100-year floodplain. The 
filtered claims were then matched to LSRs based on both the event date and census tract. Events 
that overlapped in both space and time, meaning they occurred within the same census tract and 
on the same date, were identified as pluvial flood events. 

 

4.1.3. National Landcover Database 

The National Land Cover Database (NLCD), developed by the U.S. Geological Survey (USGS) 
in collaboration with the Multi-Resolution Land Characteristics (MRLC) Consortium, provides 
a nationally standardized, 30-meter resolution raster inventory of land cover across the United 
States [17]. Using a modified Anderson Level II classification system, the NLCD distinguishes 
20 land cover classes, including various vegetation types, development densities, agricultural 
uses, as well as water, ice, snow, and barren land. The database is derived from multi-date Landsat 
satellite imagery, enabling consistent analysis of land cover and change. In this study, we utilized 
the 2021 NLCD layer to determine the dominant land cover type within each catchment based 
on area. 

 

4.2. Study Area 

In this study, we utilize catchments from the NextGen hydro fabric across the entire United 
States. We select the catchments through the intersection of Local Storm Reports (LSR) events 
and National Flood Insurance Program (NFIP) data. This approach enables the isolation of 
high-confidence cases of pluvial flooding. We identify 595 distinct flooding events occurring 
between 2005 and 2021. From these events, we extract 251 unique NextGen catchments from 
the hydro fabric. These catchments were selected based on their occurrence within the compiled 
LSR events. Only catchments experiencing multiple flooding events during the study period 
were included in the final dataset (Figure 2). 
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Figure 2. Distribution of final LSR events corresponding to NFIP damage percent per NextGen catchment 

4.3. NextGen Framework  

The NextGen Framework is a model-agnostic, standards-based software platform that enables 
explicit coupling of domain science models through sequential sharing of computed states and 
fluxes[18]. The NextGen framework facilitates water resources model interoperability, 
intercomparison, and testing of research hypotheses [19]. The framework relies on a specified 
hydrofabric, which delineates the hydrologic landscape into discrete catchments and flow paths. 

The NextGen hydrofabric, realized at a scale of 3–15 km² (although some catchments may fall 
outside this range due to local hydrographic constraints or network topology requirements) with 

a minimum channel reach length of 500 m, enables catchment-based aggregation of 
hydrometeorological forcings and supports model interoperability through its standards-based, 
modular architecture. This hydrofabric structure ensures spatial consistency for runoff 
generation and routing and is derived from the NHDPlus dataset [20], [21].  

The National Water Center’s CFE model is a conceptual hydrological model inspired by the 
WRF-Hydro physical processes that has been applied to estimate the volume of water flowing 
into rivers and streams following rain events[19]. The WRF-Hydro system has a 250m routing 
grid, making it computationally expensive. CFE conceptual representation retains core 
hydrological behaviors, including mass balance fidelity, with the same rainfall portioning scheme 
and nonlinear groundwater reservoir as the NWM [22].  The CFE model uses a 
Geomorphological Instantaneous Unit Hydrograph (GIUH) [23] for the surface runoff routing 
(GIUH_runoff), and lateral subsurface is handled via a Nash Cascade Model [24]. During rainfall 
events, potential evaporation is subtracted, and the remaining precipitation is partitioned into 
infiltration and surface runoff, which is routed using GIUH ordinates derived from watershed 
attributes and convolved with effective rainfall [22]. In this study, the NextGen CFE v1.0 model 
is simulated for the selected 251 catchments. This simulation includes pluvial as well as non-
pluvial events to derive the indices and validate false alarms.  

 

4.4. Pluvial flood detection approaches 

In this study, we select qualitative and quantitative approaches for detecting the signal of pluvial 
flood from the NextGen framework. Integration of both approaches creates a more robust and 
interpretable analysis pipeline. For the qualitative analysis, we focus on visual verification of the 
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pluvial event based on the LSR database and CFE simulations. For LSR database events, we plot 
the time series of rainfall and corresponding GIUH runoff with LSR event markers. We validate 
the pluvial events by assessing the temporal alignment between GIUH runoff peaks and 
documented LSR events. We can confirm the accuracy of the methodology in capturing flood 
signals based on the close correspondence on Figure 3.  

 

 

Figure 3. Qualitative visualization of pluvial floods against the CFE simulation generated for the NextGen Catchment 
655183. (a) Catchment area representing the dominant landcover to be developed (urban) followed by cultivation, pasture 
and open water. Time series plot  obtained for the catchment (b) for year 2008 (c ) for year 2010 (d) for year 2012 (e) for 
year 2021. 

For the quantitative analysis, we employ an index-based characterization approach using 
hydrological parameters from the CFE simulation, specifically the GIUH runoff and peak GIUH 
runoff, alongside rainfall information, including the cumulative and peak rainfall. Further, the 
duration between LSR events and GIUH initiation was used as a proxy to define the time span 
for indices calculations. We derive composite indices based on these parameters. These indices, 
powered by hydrological models, enable consistent, scalable, and automated flood detection and 
forecasting. We adopt Pluvial Flood Index-1 (PFI-1), defined as the ratio of accumulated GIUH 
runoff to accumulated rainfall, as in equation 1. We select Pluvial Flood Index-2 (PFI-2), defined 
as the ratio of peak GIUH runoff to peak rainfall within an 18-hour timeframe, as in equation 2. 
We chose 18 hours for volume determination to mimic NOAA's High Resolution Rapid Refresh 
(HRRR) forecasting time (Figure 4). For both indices, we go back 24 hours from the event 
occurrence timeline. From this 24-hour start time, we move forward in the time series. We mark 
the point where GIUH runoff values begin to rise from zero as "backtime” (Figure 3). We 
calculate the difference between the LSR event time and backtime and mark it as "simulation 
time (Figure 4). We determine the first quartile (Q1) and third quartile (Q3) for each simulation 
time observed across events. We define α1 as the percentage ratio of GIUH runoff to rainfall at 
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the particular backtime. For additional alpha determination, we find the number of hours 
between the median and Q3. For the first run case, we select every event and determine values 
for simulation time and alphas. For the final PFI determination run, we fix α based on the median 
after removing outliers from the concatenation of α1 to αn.  

 

𝑃𝐹𝐼 − 1 =  
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑢𝑛𝑜𝑓𝑓

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙
    (1) 

𝑃𝐹𝐼 − 2 =  
𝑃𝑒𝑎𝑘 𝑅𝑢𝑛𝑜𝑓𝑓

𝑃𝑒𝑎𝑘 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙
     (2) 

 

Figure 4. Diagrammatic representation of evaluation metrics for the pluvial flood event detection 

 

5. Results 

Figure 5 provides a statistical assessment of α and simulation time distributions, along with an 
evaluation of pluvial flood indices and damage percentages quantified across different area bins. 
Figure 5a shows a histogram representing the distribution of α values. We observe a right-
skewed distribution with a high concentration of α values in the lower range (approximately 
below 20), followed by an extended distribution towards higher values (up to approximately 90). 
We find that most events possess relatively smaller α values, with fewer instances of large α 
values representing extreme conditions within the selected events. The observed distribution 
suggests that catchments generally have moderate to high infiltration capacities that limit runoff 
in most scenarios. However, critical or extreme scenarios remain with limited infiltration capacity 
or higher antecedent moisture conditions, resulting in significant runoff production. The 
distribution highlights that while severe runoff-producing events may be infrequent, their 
magnitude could be substantial when they occur. For further analysis, we set the α value to 11.2 
based on the median of observed values. Figure 5b illustrates a histogram depicting the 
distribution of simulation times in hours. For simulation time, we observe a left-skewed 
distribution with concentration of simulation durations towards longer time frames, notably 
around 20–24 hours. We find the median simulation time to be 19 hours, approximately fitting 
the time window (18 hours) selected for PFI determination. The selected alignment suggests that 
the chosen 18-hour forecasting window effectively captures the onset of runoff and fulfills 
pluvial operational forecasting needs. 
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Figure 5. Statistical analysis of pluvial flood characteristics and impacts: (a) Distribution of alpha values across all 
analyzed events, (b) Distribution of simulation times for all events, (c) Quantification of Pluvial Flood Indices (PFIs) for all 
events, and (d) Observed damage percentage for different events based on National Flood Insurance Program datasets, 
categorized by area division. 

Figure 5c represents the variation of PFIs across the analyzed events. We observe that both 
indices (PFI-1 and PFI-2) exhibit higher median values in smaller area categories. However, we 
find a slight decrease in median values, increased variability, and more outliers in mid-sized 
catchments (5–10 km² and 10–15 km²). This indicates heterogeneous hydrological behaviors. 
This pattern aligns with the observed clusters across different landcover types shown in Figure 
6. We observe the dominance of developed areas in each landcover class within smaller area 
divisions. We also find clusters occurring in higher area divisions. This suggests increased pluvial 
indices in lower area catchments with developed landcover, as infiltration reduces due to higher 
impermeability. As the catchment area increases, multiple landcover classes are included, as seen 
in Figure 6 (d), (e), and (f). This suggests an increase in permeability and decreased indices. 
However, when the area exceeds 15 km², multiple urban areas are included. This prompts an 
increment in the pluvial indices. Figure 5d represents the damage percentage across different 
catchment areas. As NFIP rounds off the exact location coordinates, damage data cannot be 
effectively utilized for quantifying the intensity of pluvial flooding. 
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Figure 6. Clusters observed for runoff across different landcover and area divisions 

 

Figure 7 demonstrates area-dependent behavior with distinct patterns across catchment sizes. 
We observe that small catchments (0-5 km², Figure 7a) are most responsive, with both indices 
(PFI-1 and PFI-2) showing identical 51% exceedance rates above the 0.2 threshold due to 
minimal storage and short travel times that allow moderate rainfall to quickly trigger alert 
conditions. As catchment size increases to 5-10 km² (Figure 7b), attenuation effects begin to 
emerge, with PFI-1 exceedance dropping to 41% while PFI-2 remains relatively stable at 38%, 
indicating that while the cumulative response becomes more damped, peak flows can still occur 
through sub-catchment contributions. The 10-15 km² (Figure 7c) range exhibits mixed behavior 
where cumulative response continues to attenuate (PFI-1 at 40%) but peak response increases 
(PFI-2 at 42%), suggesting that larger routing distances smooth flood waves, yet sufficient 
rainfall intensity can still produce threshold-exceeding peaks. In the largest catchments (>15 
km², Figure 7d), storage effects dominate cumulative runoff, reducing PFI-1 exceedance to 34% 
despite higher mean values, while PFI-2 maintains 39% exceedance through a concentrated 
distribution around 0.19, demonstrating that individual storm cells or urbanized tributaries 
within large basins can still generate significant peak ratios even when total volumes are 
substantially damped. We find the choice between indices depends on the specific catchment 
size and whether the priority is monitoring cumulative volume response or peak flow detection. 
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Figure 7. Fitted Beta distribution for PFI-1 and PFI-2 across selected catchment area (a) for 0-5 km2 (b) for 5-10 km2 

(c) for 10-15 km2 (d) for >15km2 

 

6. Conclusion 

In this study, we demonstrate the ability of the NOAA NextGen-NWM framework to simulate 
and detect pluvial flooding events. We prepare the pluvial flood database utilizing the LSR and 
the NFIP database. We establish pluvial flood indices for detecting pluvial flood signals by 
integrating results from CFE simulations, including runoff and rainfall data. The distribution of 
pluvial flood indices across different catchments with variable land cover produces distinct 
patterns. We find that PFIs are higher in small area catchments with urban land cover. The 
indices decrease as catchment area increases, and other land cover classes are included. However, 
PFIs suddenly increase when multiple urban areas are included in larger catchments. Observed 
findings provide benchmarks for pluvial flood detection within the NextGen framework. The 
results demonstrate the potential of NextGen for capturing fine-scale urban flood signals at 
operational scales. 

Future research should validate these indices across diverse geographic regions and 
environmental conditions. Integration of real-time forcing data could improve the accuracy of α 
parameter estimation, simulation time, and pluvial flood indices. Likewise, integration of 
machine learning algorithms for automatic detection of pluvial flood signals using these indices 
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represents another promising direction. Additionally, coupling these indices with damage 
assessment models could enhance early warning system capabilities. Further investigation into 
the scalability of these indices across different catchment sizes and urban configurations will 
strengthen their operational utility. Additionally, the discretization of only urban catchment 
within NextGen hydrofabrics for pluvial flood indices determination can be useful. 
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Figure S1. Comparison between pluvial and non-pluvial events in terms of pluvial flood indices 
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Figure S2. Comparison between pluvial flood indices and selected forcings  
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Abstract: Urban pluvial flooding poses a growing threat to infrastructure and public safety, 
exacerbated by increasing impervious surface extent and intensifying precipitation. Traditional 
hydrodynamic models, while accurate, are computationally intensive and ill-suited for rapid 
forecasting in urban environments. The goal of this study is to investigate the feasibility of using 
Deep Learning (DL) techniques as a surrogate model for high-fidelity, street-scale pluvial flood 
models. In this study, a combination of historical and synthetic rainfall events was employed to 
generate flood inundation maps using the Personal Computer Storm Water Management Model. 
The suggested methodological framework was applied to the city of Hoboken, New Jersey, a 
highly urbanized area susceptible to pluvial flooding. The proposed machine learning 
architecture integrates spatial features such as digital elevation models and building footprints 
through a 2D Convolutional Neural Network (CNN), and temporal rainfall inputs through a 1D 
CNN. The combined features are then used as inputs to generate high-resolution binary flood 
maps indicating flooded and non-flooded areas. The DL model evaluation showed high 
performance during the testing phase, achieving a Critical Success Index of 0.89, Probability of 
Detection of 0.92, and False-Alarm Ratio of 0.03. The obtained results highlight the potential of 
DL techniques to emulate high fidelity models and advance current forecasting capabilities by 
integrating innovative pluvial flooding modeling tools. The CNN surrogate offers a pathway 
toward real-time flood forecasting through an integration into upcoming water modeling 
platforms such as the NOAA Next Generation Water Resources Modeling framework. 

 

1. Motivation 

Floods are one of the most common and costly natural disasters in terms of both economic 
damage and human lives[1]. In the United States, floods kill more people per year than any other 
hazardous weather phenomenon [2] and threaten many areas of modern life, including electricity, 
water treatment, communications, and airports [3]. The urban environment plays a crucial role 
in exacerbating pluvial flooding [4]. The high proportion of impervious surfaces reduces 
infiltration, thereby increasing the volume of surface runoff [5], [6]. Pluvial floods already 
comprise the majority of flood claims in the United States [7], and climate change is causing 
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floods to increase in frequency, intensity, and flashiness [6], [8]. Therefore, calls for better 
strategies of flood prediction and mitigation are increasing in response to this elevated threat [4], 
[5], [6] as drainage systems built for past storm events may struggle to accommodate increased 
future demands [9]. 

There are three primary types of floods: fluvial, pluvial, and coastal. Coastal influence is confined 
to where there is tidal influence, while fluvial and pluvial events can impact anywhere inland. 
Fluvial flooding occurs when stream discharge overtops the banks of a channel and inundates 
the floodplain, in contrast to pluvial flooding, which occurs when the volume of precipitation 
exceeds the drainage capacity of the landscape [10]. Therefore, it is not dependent on channel 
routing and is sensitive to local factors[11]. 

The National Water Model (NWM) is a modeling framework that simulates streamflow over the 
entire United States [12]. Currently, the NWM does not yet integrate both pluvial and fluvial 
flood forecasting [13]. Therefore, pluvial flood integration into the NWM would be a step 
forward for flood prediction in the United States. Hydrodynamic models offer valuable insights 
into inundation dynamics; however, these models often require substantial parameterization and 
long simulation times. As a result, these types of models are not good for rapid forecasting and 
response. Consequently, there is a critical need to develop alternative approaches that can 
maintain analytical accuracy while reducing the computational demand. 

2. Objectives and Scope  

The primary objective of this study is to develop a data-driven surrogate model capable of rapidly 
predicting pluvial flood inundation maps with high spatial accuracy. By leveraging a combination 
of synthetically generated rainfall hyetographs, digital elevation models (DEMs), and building 
footprint data, the model aims to replicate the outputs of the physics-based Personal Computer 
Storm Water Management Model (PCSWMM) hydrodynamic simulations. Specifically, the study 
focuses on training a convolutional neural network (CNN) to classify each pixel of an urban 
domain as flooded or non-flooded based on its input characteristics. Also, the scope of this work 
is confined to the urban area of Hoboken, New Jersey. The model is trained and evaluated using 
150 synthetic rainfall events and their corresponding maximum flood depth outputs from 
PCSWMM. The resulting surrogate model is designed to significantly reduce computational time 
while maintaining acceptable accuracy, making it suitable for near real-time flood forecasting and 
early warning applications in data-scarce or time-constrained environments. The proposed 
workflow is illustrated in Figure 1. 

 

Figure 1. Workflow of the proposed methodology integrating hydrodynamic modeling and machine learning to predict 
flood extent. 
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3. Previous Studies 

3.1 Urban Pluvial Flooding 

The urban environment plays a crucial role in exacerbating pluvial flooding [4]. Storm sewer 
systems can become overwhelmed by intense precipitation as well as improper maintenance [14]. 
Other factors include the flooding of small local watercourses and the generation of increased 
rainfall from the urban heat island effect [15], [16]. To summarize, the key drivers of urban 
flooding are the built environment and anthropogenic climate change [17]. Once overland flow 
is generated, micro-topography plays a significant role in influencing water accumulation and 
flow patterns [18]. Therefore, hyper-resolution modeling is required to capture the dynamics of 
pluvial flood events. 

 

3.2 Modeling Approaches for Real-Time Forecasting 

The three primary approaches to flood inundation modeling are hydrodynamic models (HEC-
RAS, SWMM, MIKE FLOOD), empirical models, and conceptual models (Rapid Flood 
Spreading Method, Height Above Nearest Drainage) [19], [20], [21]. Empirical models can only 
provide hindcasting based on observations and rely on assuming the underlying processes. As 
we cannot observe the future, this type of modeling is not applicable to forecasting pluvial 
floods. Conceptual models are fast but more applicable to large areas rather than providing the 
necessary site-tailored information needed for actionable flood prediction. Current flood 
forecasting relies heavily on physically based hydrodynamic models. While these models offer 
high accuracy and a clear understanding of underlying physical mechanisms, their computational 
intensity and requirement for accurate parameterization limit their utility for real-time, high-
resolution urban applications [20]. 

Therefore, recent advances in urban pluvial flood prediction have focused on artificial 
intelligence (AI), machine learning (ML), and DL techniques to improve computational 
efficiency while preserving accuracy [22]. Traditional machine learning techniques such as 
random forest [23], logistic regression, support vector machine [24], and gradient boosting 
decision tree [25] have been explored for flood forecasting and can significantly speed up 
computation while preserving accuracy to a large degree. However, these training procedures 
can struggle with overfitting, limiting their applicability to unseen data [23], [26]. DL can serve 
to bridge this gap, learning physical relationships from data without explicit hydrodynamic 
computations [27], [28], [29]. 

 

3.3 CNNs for Urban Pluvial Flood Forecasting 

DL surrogate models trained on the results of hydrodynamic models have been shown to 
provide comparable results in a fraction of the time to support real-time decision making [30], 
[31], [32], [33]. DL modes have shown the ability to successfully predict pluvial floods with high 
accuracy and with significant reductions in computation time [30], [34] CNN surrogate models 
have emerged as a valuable tool for urban pluvial flood forecasting due to their ability to identify 
relationships from input data to learn computational reductions to physical simulations. CNNs 
have been shown to outperform other types of ML models [23], [28]. Collectively, these studies 
illustrate the effectiveness of DL surrogate models and support the notion that this concept can 
be utilized for real-time flood forecasting. 
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4. Methodology 

4.1. Study Area 

The study area for this research is Hoboken, New Jersey, a highly urbanized environment 
(Figure 2) with high levels of imperviousness, low topography, and a sewer system with 
insufficient capacity to effectively drain the area during wet weather. Approximately 100 
combined sewer overflows discharge per year into the Hudson River [35]. Hoboken benefits 
from extensive flood documentation available through NOAA’s Local Storm Reports database, 
providing valuable observational data for model evaluation. Additionally, the city is equipped 
with an in-town rain gauge that has recorded precipitation data at 5-minute intervals since 2017, 
offering high-resolution rainfall input for hydrodynamic simulations. Time series flood data, 
including one flood event with measurements from multiple locations, supports both the 
calibration and validation of the model, enhancing the robustness of the simulation and 
subsequent machine learning training. 

 

 

Figure 2. Study area - City of Hoboken 
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4.2. Development of Synthetic Rainfall Hyetographs Using Historical Storm Data 

To develop a diverse ensemble of synthetic rainfall hyetographs, we implemented a stochastic 
perturbation approach based on four historical storm events recorded in Hoboken: Hurricane 
Barry 2019, Tropical Storm Fay 2020, Hurricane Henri 2021, and Hurricane Ida 2021. Each real 
rainfall series was augmented through random intensity scaling, temporal resampling using non-
integer interpolation factors (via scipy.ndimage.zoom), temporal shifting, and Gaussian noise 
injection. This procedure generated 150 synthetic events with variable durations and intensities, 
mimicking the nonstationary and heterogeneous nature of urban pluvial rainfall (Figure 3). Such 
synthetic rainfall generation is critical for stress-testing hydrological models and training data-
driven flood prediction systems, particularly in urban environments where event-based 
variability governs flood dynamics. The final synthetic dataset was exported in tabular format 
for subsequent modeling applications. 

 

Figure 3. Synthetic rainfall hyetographs generated from four historical events using stochastic perturbation. 

4.3. High fidelity FIM with PCSWMM 

To generate training targets for the surrogate model, the PCSWMM hydrodynamic model was 
executed 150 times using the synthetically generated rainfall events as inputs. Each simulation 
produced a maximum flood depth map, representing the spatial distribution of peak inundation 
across the city. Rainfall events spanned a range of return periods from <1 year to >1000 years. 
These maps serve as the ground-truth outputs for supervised learning, enabling the development 
of a DL-based surrogate capable of replicating PCSWMM outputs with significantly reduced 
computational time. This approach supports rapid flood forecasting and real-time decision-
making in urban flood management applications. 
PCSWMM, developed by Computational Hydraulics International, is a GIS-based extension of 
EPA-SWMM designed to simulate single-event and continuous rainfall-runoff processes. It is a 
physically based, discrete-time model grounded in the principles of mass, energy, and 
momentum conservation. This study utilizes a 2D PCSWMM model with a semi-distributed 
routing approach, where the 2D component captures overland runoff. Sub-catchments are 
represented to model runoff generation and conveyance [36]. 
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The Hoboken model covers 3,191,121 m2 (approximately 1.2 mi2). In the model, there are 7695 
subcatchments and 3460 nodes. The size of the mesh is 10m. The roughness value is 0.014. 
PCSWMM utilizes various input data such as a digital elevation mode (DEM) from the USGS, 
building footprint from Microsoft building footprint, and storm drainage network details from 
the North Hudson Sewerage Authority. It processes this information using a dynamic wave 
routing approach. Figure 1 illustrates the overall workflow of PCSWMM. 
A 1-foot threshold was applied to the depth output based on a review of flood thresholding 
literature [37], [38]. These maps are then used to train a DL model. 
To quantitatively evaluate model performance, the pluvial flood event of September 2023 was 
simulated. The corresponding rainfall time series was used as the internal input, and water depth 
was subsequently modeled. The simulated water depths were compared with observed values at 
two different locations in Hoboken, as shown in Figure 4. The Root Mean Square Error (RMSE) 
was calculated and displayed in Table 1. The results demonstrate that the model is capable of 
accurately simulating water depth in this area in these two locations of the city. 

 

 

Table 1. Summary of evaluation metrics calculated during the Sept. 29, 2023 event 

 

Observation Group Time Observed (in) Simulation (in) Percent Bias (%) RMSE (in) 

A 

11:45 13 10.83 

-11 2.362 

11:45 7.5 10.83 

11:30 6.5 9.95 

11:21 9 8.9 

11:42 10 10.42 

B 

10:39 3 1.64 

31 1.236 

10:36 3 1.64 

10.:38 3 1.64 

10:40 6.4 5.65 

Overall[1] - -0.16 1.944 
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Figure 4.  Ground truth observations collected during the Sept. 29, 2023 event. 
Measurements are above ground level. [39]  

 

After model evaluation, 150 simulations were conducted to generate corresponding flood 
inundation maps maximum depth), which were used to train the machine learning model. 

 

4.4. DL Model 

To predict spatial flood extents based on rainfall time series and geospatial information, we 
designed a dual-path DL architecture that integrates a two-dimensional (2D) CNN for spatial 
raster inputs and a one-dimensional (1D) CNN for temporal rainfall data, as shown in Figure 5. 
The model leverages feature-level fusion to combine spatial and temporal information and 
generate high-resolution binary flood maps.  

The first path of the model processes geospatial raster data, specifically the digital elevation 
model (DEM) and building footprint layers, which are stacked into a two-channel input tensor 
of shape (256, 256, 2). This input is passed through a sequence of 2D convolutional layers 
designed to extract hierarchical spatial features. The raster stream begins with a convolutional 
layer with 16 filters of size 3×3 and ReLU activation, followed by batch normalization and a 2×2 
max pooling layer. This is followed by a second convolutional layer with 32 filters (also 3×3), 
again followed by batch normalization and max pooling. A final convolutional layer with 64 
filters is applied, followed by a dropout layer (rate = 0.3) to reduce overfitting. The output feature 
maps are then flattened to form a fixed-length feature vector representing the spatial context. 

The second path is designed to extract features from the rainfall time series, provided as a one-
dimensional vector with 189 time steps and a single channel. The input is processed using a 1D 
convolutional layer with 16 filters of size 3 and ReLU activation, followed by batch normalization 
and 1D max pooling to reduce temporal dimensionality. A second convolutional layer with 32 
filters is applied, followed by a dropout layer (rate = 0.3) and flattening of the output sequence. 
This pathway is tailored to learn temporal rainfall patterns relevant to flood generation. 

The feature vectors from the 2D CNN (raster data) and 1D CNN (rainfall) branches are 
concatenated to form a combined representation. This merged feature vector is passed through 
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a fully connected (dense) layer with 1024 units and ReLU activation, followed by a dropout layer 
(rate = 0.4) to enhance generalization. The output layer is a dense layer with 65,536 units 
(corresponding to 256×256 pixels). This flat output is reshaped into a 2D flood map of 
dimensions (256, 256, 1). 

 

Figure 5.  DL model architecture 

 

5. Results 

5.1. Hydrodynamic Model Results  

To assess the performance of the hydrodynamic model, it was evaluated using a specific rainfall 
event that occurred on September 29, 2023. The simulated water depths were compared against 
observed data at distinct points. The results indicate that the model exhibits a Root Mean Square 
Error (RMSE) value of 1.944.  

 

5.2. DL Model Results 

The evaluation results for the neural network surrogate model indicate an accuracy of 0.9994. 
However, due to the highly imbalanced nature of the dataset—with a significantly larger number 
of non-flooded pixels compared to flooded ones—this high accuracy alone is insufficient to fully 
represent the model’s predictive performance. Therefore, additional metrics must be examined. 
Precision (0.9669) indicates that the model rarely classifies non-flooded areas incorrectly as 
flooded. Recall (0.9218) demonstrates the model’s effectiveness in accurately detecting actual 
flooded regions. The F1 Score (0.9438) combines precision and recall into a single balanced 
metric, further confirming the model’s robust predictive capability. Additionally, the Probability 
of Detection is 0.92, False-Alarm Ratio is 0.03, and the Critical Success Index (CSI or Threat 
Score) is 0.8936. CSI measures the fraction of correctly predicted flooded pixels out of all pixels 
predicted or observed as flooded, thus indicating strong reliability in flood prediction. These 
metrics and confusion matrix values are summarized in Table 2. 
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Table 2. The evaluation metrics and confusion matrix of the trained neural network 

 

Metric 

 

Accuracy 
Precision Recall F1 Score 

 

CSI 

True 
Negative  

False 
Positive 

False 
Negative 

True 
Positive 

 

Value 
0.9994 0.9669 0.9218 0.9438 0.8936 75,774,690 13,577 33,649 396,452 

 

In addition to testing our neural network surrogate model with unseen synthetic rainfall 
scenarios, we validated the model’s performance using unseen real-world precipitation data from 
Hurricane Barry, which occurred on July 18, 2019. The predicted flood inundation map 
generated by our neural network closely aligns with the benchmark PCSWMM model results, 
demonstrating that the model effectively captures the spatial distribution and extent of flooded 
areas. Figure 6 illustrates the PCSWMM and our neural network surrogate model results for 
Hurricane Barry, July 18, 2019. 

 

Figure 6.  Comparison between PCSWWM and Neural Network Surrogate Model for Hurricane Barry, July 18, 2019 

 

Evaluation metrics calculated against the PCSWMM benchmark results for Hurricane Barry 
indicate excellent predictive performance, with accuracy of 0.9990, precision of 0.9958, recall of 
0.9314, and an F1 Score of 0.9626. These metrics demonstrate that the model not only predicts 
flooded regions with very high precision, thereby minimizing false-positive predictions, but also 
maintains a robust recall rate, effectively identifying most areas that were indeed flooded. The 
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high F1 Score further confirms the balanced and reliable nature of our neural network surrogate 
model, even when tested against actual flood events. Visual inspection of the flood maps from 
PCSWMM and our neural network further supports these quantitative findings, underscoring 
the model’s capability for accurate near-real-time flood inundation mapping. 

 

6. Conclusion 

This study presents a framework for integrating pluvial flood prediction into the NWM through 
the use of a CNN. The CNN was trained using outputs from a physics-based hydrodynamic 
model as reference data and demonstrated strong predictive performance, achieving a Critical 
Success Index (CSI) of 0.893. The results indicate that the proposed approach is capable of 
accurately reproducing flood extents and can be adapted to other urban areas if a sufficiently 
accurate hydrodynamic model for the target region is available. 

Future work should aim to implement the forecasting capabilities by feeding the trained neural 
network a forecast precipitation time series and then assessing the predicted to observed flood 
extent. Moving past deterministic flood map outputs to quantify uncertainty both in the forecast 
and the CNN will enhance the framework’s utility for real-time flood risk assessment [40]. 
Furthermore, this is a data-driven CNN and must learn the underlying physical mechanisms to 
generate flood extent. Future work can investigate the CNN to more explicitly link the predicted 
flood to the specific underlying processes [41]. Additionally, training the neural network model 
across diverse locations can help develop a more generalized model that is transferable to other 
regions. 

The authors acknowledge the use of ChatGPT to refine the English language during the 
preparation of this manuscript. All authors reviewed and edited the content following its use and 
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Abstract: In this study we demonstrate a pipeline to distilling hydrologic forecasts to county 
level for emergency responders with an operational decision support tool: FLO-NAVSAFE. By 
combining short-range forecasts from the National Water Model (NWM) with the Height Above 
Nearest Drainage method, FLO-NAVSAFE generates flood inundation maps (FIMs) for near 
real-time, 1-, 2-, and 10-hour forecast horizons. Flood inundation uncertainty is addressed 
through time-lagged ensembles of NWM short range forecasts, offering both most-likely and 
worst-case scenarios to better reflect operational risk. In our analysis of the July 4 - 7 flood event, 
~71% of flood incident reports in Travis County were captured by our FIM. Evaluation of our 
FIM against the best estimates of flooding yielded a Critical Success Index of 88%. FLO-
NAVSAFE incorporates stakeholder-defined priorities through the Analytic Hierarchy Process 
and visualizes social vulnerability and critical infrastructure exposure. Built using Esri Experience 
Builder, FLO-NAVSAFE provides real-time and forecasted flood intelligence through an 
interactive, user-friendly interface. Although challenges remain with data latency and workflow 
automation, the platform demonstrates a scalable approach to bridging hydrologic forecasts with 
emergency response needs in flood-prone communities.  

 

 

1. Motivation 

While the actual costs of floods remain uncertain, it has been estimated that annual flooding 
costs in the United States (U.S.) range between $180 - $490 billion in 2023, including 
infrastructure needs for solutions and structural damage to commercial physical infrastructure 
[1]. The risk of flooding is expected to increase over time due to climate change and population 
growth [2].  This, however, does not include the loss of life, which is estimated at 127 fatalities 
per year [3]. The State of Texas experiences more floods and vehicle-related flood fatalities than 
any other state in the U.S.[4]. In 2015, Jessica Hollis, a deputy at the Travis County Sheriff’s 
Office, was one of such fatalities, when she was swept away while checking roadways for high 
water on a routine patrol [5].  
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To aid in operational water management and to decrease the likelihood of flood fatalities, the 
National Water Model (NWM), a service forecasting flows in the approximately 2.7 million river 
reaches in the Contiguous United States (CONUS), was operationalized in 2016 [6] [7]. It has 
different configurations for different forecasting needs, including Short-Range (SR) 
deterministic forecasts spanning 18 hours, Medium-Range ensemble forecasts covering 10 days, 
and Long-Range ensemble forecasts extending to 30 days [6].  While many flood alert systems 
utilize this information to notify users of the possibility of flooding at the county level or for 
specific rivers and streams, they do not lend themselves much to actionable decision making. 
[8]. 

2. Objectives and Scope  

Our primary aim for this project was to leverage the existing capabilities of the NWM to support 
emergency responders preventative disaster risk management and mitigation of flood-related 
damage during extreme hydrological events. Our project was scoped to Travis County, Texas 
(TX) and the needs of deputies (our emergency responders of focus) in the Travis County 
Sheriff’s Office (TCSO) during fluvial flooding events. Our central objective was guided by two 
research questions: 

● How can the NWM nowcasts and forecasts support real-time decision making by local 
emergency responders in the U.S.?  

● How can emergency responder priorities be integrated into the development of a 
decision-support tool that leverages the NWM to improve its translation from research 
to operational application for disaster preparedness and mitigation? 

To address these questions, we created a web application using NWM nowcasts and forecasts to 
visualize flood inundation maps showing the resultant impact of extreme flood events on critical 
infrastructure, roadways, and low water crossings.  

 

3. Previous Studies 

To our knowledge, operational flood inundation decision support tools specifically targeted 
towards emergency response within an operational context remain few and far between.  

The National Oceanic and Atmospheric Administration (NOAA) Dynamic Flood-Inundation 
Mapping (FIM) Service, launched in September 2024, converts National Water Model (NWM) 
and River Forecast Center (RFC) flows into stage and extent using the Height-Above-Nearest-
Drainage (HAND) framework and synthetic rating curves. Currently, covering ~30 % of the 
U.S. population, it delivers (i) a latest-analysis map, (ii) an RFC 5-day maximum FIM forecast, 
and (iii) an NWM-National Blend of Models (NBM) 5-day maximum FIM forecast [9].  

To further support accessibility and operational integration of NOAA’s HAND-based Dynamic 
FIM products, researchers at the University of Alabama, in partnership with NOAA and the 
Cooperative Institute for Research to Operations in Hydrology (CIROH), developed FIMserv, 
an open-source, notebook-based toolkit that generates custom inundation maps from NWM, 
the Group on Earth Observation (GEO) Global Water Sustainability (GEOGloWS), or the 
United States Geological Survey (USGS) discharge without the original Docker overhead [9]. 
FIMserv is a flexible, open-source toolkit designed to streamline and extend the operational use 
of the Office of Water Prediction (OWP) HAND-FIM framework [10].  

While Dynamic FIM and FIMserv enable more analyst-driven workflows, Pin2Flood is a mobile- 
and web-based application that allows field personnel to generate instant flood maps by simply 
dropping a pin at the water’s edge [11]. Developed by the Center for Water & the Environment 
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at the University of Texas at Austin, Pin2Flood, leverages the same HAND-based framework 
used in NOAA’s Dynamic FIM service to instantly return the estimated inundation boundary, 
impacted address points, and affected roadway, creating a real-time common operating picture 
shared between field responders and emergency managers. However, instead of using 
streamflow forecasts, it delivers a rapid inundation estimate based on current field conditions, 
making it particularly valuable for localized use. A previous Summer Institute developed a 
workflow combining NWM forecasts, HAND mapping, and social vulnerability data to assess 
flood impacts in Houston during Hurricane Harvey and Hurricane Beryl [12].  

Our work builds on these services or products to provide more than deterministic FIMs only 
for current conditions (real-time) and/or too far into the future (5 day forecasts); providing 
probabilistic FIMs for short range forecasts (up to 18 hours) while considering the social impact 
of flooding. 

 

4. Methodology 

4.1. Data and Study Area 

Our study focuses on Travis County, TX, (as seen in Figure 1) which spans approximately 1023 

square miles, of which 994  square miles is land area and 29 square miles (3 %) is covered by 
water [13] [14]. Nearly the entire county lies within the Colorado River Basin, which drains 

around 39,900 mi², originating in the Texas High Plains [15]. Numerous smaller local watersheds 
or catchments exist, including Onion Creek, Barton Creek, Walnut Creek, Bull Creek, and Shoal 
Creek, which drain into the Colorado River within Travis County. Watersheds like Barton Creek 
and Shoal Creek lie within "Flash Flood Alley", one of the continent’s most flood-prone regions 
[16]. 



Water Prediction Innovators Summer Institute 2025   

66 

 

 

Figure 1. Map of study area, displaying the Travis County watershed boundary (black line), stream network (blue 

gradients), Travis County Sheriff’s Office patrol districts (colored polygons), and the locations of documented low‐water 
crossings (red points) used in this analysis. 

A complete description of the data used in this study, including low-water crossings, road 
networks, flowlines, flood stacks, catchments, and jurisdictional boundaries is provided in the 
Supplementary Material (S1). The framework detailing our approach to create a pilot of an 
operational map is as seen in Figure 2. 
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Figure 2. Our proposed framework for creating an operational pilot tool for first responders in Travis County Texas. 
The pink rectangles represent tasks; the blue parallelograms represent downloaded used in completing tasks and the grey 
shapes represent data used to create both FIMs and maps for impact visualization 

 

4.2. Stakeholder Engagement and Criteria Elicitation 

To align the development of our flood decision-support tool with the operational needs of local 
emergency responders, we conducted a structured elicitation of decision-maker preferences 
using a multi-criteria decision making (MCDM) method known as the Analytic Hierarchy 
Process (AHP). AHP allows decision makers to perform pairwise comparisons of criteria 
important to them, producing a consistent set of relative weights that reflect their perceived 
importance [17]. However, human judgements are often inconsistent and we make use of one 
of many adjustment methods: the skew-symmetric-bilinear (SSB) maximum-entropy approach, 
which finds the probability mix that no other mix can dominate and then converts it to a fully 
consistent weight vector. This technique preserves every original ratio, needs no manual repairs, 
and defaults to the standard AHP result when the matrix is already consistent [17]. A further 
breakdown of these methods can be viewed in the Supplementary Information (S2). To 
aggregate the responses of respondents, we used two methods: an element-wise geometric mean 
of the Saaty matrices and a geometric mean of the weights after computing the weights from 
each respondent. 

An initial meeting with TCSO after the Summer Institute Bootcamp yielded eight distinct but 
related criteria/features needed in our decision support tool: FLO-NAVSAFE. The preference 
weights obtained through AHP were subsequently used to guide the design and feature 
development of FLO-NAVSAFE, ensuring that the system directly addresses at least the top 
five of the eight responder needs given the time constraint of the project. 

 

4.3. FIM Uncertainty Using Time-Lagged Ensembles 

To communicate flood forecast uncertainty to emergency responders in Travis County, we used 
time-lagged ensembles (TLEs) from the Short-Range NWM. For each forecast horizon, 1, 2, 
and 10 hours ahead, we retrieved 10 streamflow forecasts initialized at different times, capturing 
short-term variability. We generated a streamlined set of FIMs tailored to the needs of the TCSO. 
For both 1-hour and 2-hour forecasts, we produced: (1) a most likely scenario based on the 
maximum extent from the two most recent ensemble members, and (2) a worst case scenario 
from the maximum streamflow across all 10 members. For the 10-hour forecast, we created a 
single worst case FIM from the maximum streamflow across all ensemble members and forecast 
hours. This summarized flood uncertainty while making it easier for users to interpret and act 
on the results. The conceptual framework can be seen in Figure 3 [18].  

Field teams stressed that they did not want complex probability maps, and instead preferred 
visualization of what is likely to flood and what could flood in a worse-case scenario. This 
framing matches how responders make decisions, where any water on the road is treated as 
hazardous regardless of depth. Instead of statistical probabilities, we provided clear, 
consequence-based scenarios to support timely action. Prior research shows forecasts are most 
effective when uncertainty is translated into simple, actionable insights [19] [20]. The uncertainty 
shown reflects differences in streamflow forecasts, not uncertainties associated with the NWM, 
its forcing inputs, or the HAND-based mapping method. 
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(a) 

 

(b) 

Figure 3. (a) Conceptual diagram of the TLE used to generate flood‐inundation scenarios for Travis County. Each 

horizontal arrow represents a Short‐Range NWM forecast run; darker points mark the previous initialization runs. At 

any forecast time t₀, the 10 most recent runs (spaced Δt = 1 hour apart) form the ensemble. Adapted from Oh and 
Bartos’s paper in review. (b) 1h and 2h flood inundation scenarios resulting from the time lagged ensemble 

 

4.4. Evaluation Metrics 

The predictive reliability of the NWM was assessed using the Constant Ranked Probability Score 
(CRPS) for current times. CRPS was chosen due to its ability to evaluate the accuracy of 
ensemble members against observational data (in this study, USGS gauges) [19]. Percentage bias 
was used to determine whether the NWM overestimated or underestimated current conditions 
[21].  

For historical data, the Kling Gupta Efficiency (KGE) as well as the Nash–Sutcliffe Efficiency 
(NSE) were used to compare USGS discharge values at three sites (Brushy Creek at Cedar Park 
- 08105872, Lake Creek at Lake Creek Parkway near Austin - 08105886 and Onion Creek near 
Driftwood - 08158700) to those obtained from the NWM retrospective dataset. Event dates to 
perform these analyses were obtained from flooded roadway and high water incidents reported 
by TCSO between 2015 and 2016. This evaluation was performed using OWP’s Python package 
for hydrological evaluation and validation, hydrotools [22]. 

To evaluate our FIMs, we used fimeval, a Python-based FIM evaluation framework capable of 
automatically evaluating flood maps [23]. Event dates were obtained by filtering TCSO Incident 
data for flooded roadway or high water events. HAND-FIMs were generated for the July 4th - 
5th events that occurred this year in Travis County using the forecasts made for those days in 
the NWM Amazon short range forecast bucket. Due to a lack of remote sensing based 
benchmark data, FIMs from the NWM analysis assimilation with data assimilation were 
generated to be used as a benchmark. The metrics used to evaluate our FIMs included the Critical 
Success Index (CSI), Probability of Detection (POD) and False Alarm Rate (FAR). Furthermore, 
another method we used to evaluate our FIM for July 4th and 5th, involved finding the distance 
between our FIM polygons and flooded roadway incidents reported by the TCSO on July 4th 
and 5th 2025. 

 

4.5. Impact Visualization 

The American Community Survey (ACS), conducted annually by the U.S. Census Bureau, 
collects data on over 3.5 million U.S. households to capture social, economic, housing, and 
demographic characteristics[24]. For this study, we used the 2019–2023 ACS 5-year estimates to 
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extract four indicators of social vulnerability during floods: households below the poverty line, 
with at least one person with a disability, without Internet access, and without vehicles. These 
variables are commonly used in flood vulnerability research because they highlight barriers to 
evacuation, preparedness, and recovery [25]. For example, people with disabilities may face 
mobility or communication challenges, while low-income households often lack resources to 
recover after disasters [26]. Lack of Internet access can limit awareness and timely response [27]. 
Households without vehicles are more highly exposed to flood risk, especially in areas where 
private transportation is critical for evacuation and access to aid [28].  

In this study, Environmentally Sensitive Critical Infrastructure (ESCI) refers to facilities or 
services that, if flooded, could trigger widespread environmental contamination threatening 
drinking water supplies, harming ecosystems, and exposing nearby populations to hazardous 
substances during and after the event [29] [30]. We focused on five categories of ESCI in the 
study area: landfills, National Pollutant Discharge Elimination System (NPDES) permit holders, 
hazardous waste handlers, public water systems, and Toxics Release Inventory (TRI) reporters. 
Landfills manage the processing and disposal of solid waste. NPDES permittees such as 
wastewater treatment plants and industrial stormwater dischargers are authorized under the 
Clean Water Act to discharge pollutants from point sources into U.S. waters under regulated 
conditions. Hazardous waste handlers include facilities involved in the generation, treatment, 
storage, or disposal of hazardous materials. Public water systems encompass infrastructure such 
as treatment plants and pump stations that supply water to the public. TRI reporters are facilities 
in designated industries that use, produce, manage, or release listed toxic chemicals [31]. We 
obtained the locations (shapefiles) of facilities from the U.S. Environmental Protection Agency’s 
Facility Registry Service [32]. 

 

4.6. Application Development 

The development of the flood monitoring and forecast web application was carried out using 
Esri Experience Builder, integrating spatial and temporal flood data into a user-friendly interface. 
The application was structured into five main interactive pages: home, monitor, forecast, 
historical, and social vulnerability, each serving a specific purpose in communicating current, 
forecasted, and historical flood conditions. 

To create the web maps and visualizations, ArcGIS Pro was used to process flood inundation 
layers based on forecasted discharges. HAND and Synthetic Rating Curves (SRCs) were used to 
delineate flood extents across Travis County. Forecasted discharge outputs from the NWM were 
integrated into the HAND model to produce hourly flood inundation maps and low water 
crossings within the FIMs were labeled flooded. The FIMs, low water crossings, and impact 
visualizations were subsequently uploaded as feature layers to ArcGIS Online for real-time 
accessibility.1 Because ACS data are aggregated by census geography, we used the Enrich Tool 
in ArcGIS Pro 3.5.1 to align the data with the sheriff’s office sector boundaries. 

 

5. Results 

5.1. Stakeholder Criteria Elicitation 

 

1 Impact visualizations were uploaded as static maps and did not possess any real-time updates due to the frequency 

of collections by  ACS and EPA’s Facility Registry Service. 
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Both our aggregation strategies yielded the same ranking of 

features, although with different weights. When the two 

comparison matrices were first combined element-wise, the skew-

bilinear algorithm produced a consistent solution (Consistency 

Ratio (CR) ≈ 0.08); the first two criteria each received a weight of 

0.324, while the remaining six criteria obtained individual weights 

≤ 0.067. Applying the alternative strategy, deriving weights for 

each responder and then averaging them reduced the leading 

weights slightly to 0.278 and 0.228, and elevated the third-ranked 

criterion to 0.134, but left the rank ordering of the top five 

criteria unchanged. 

Across both methods, these five criteria accounted for more than 80 % of total importance, 
confirming their centrality to first-responder needs and guiding their prioritization in the initial 
prototype. These five criteria (in order) were: Simple and Concise Alerts, Reliable Predictive Capability, 
Time and Distance Information, Export tools and Historical Information. When the prototype was first 
scoped, however, only one survey response had been received. Given this time constraint we 
based the minimum-viable feature set of our app on that single matrix’s top five criteria: Simple 
and Concise Alerts, Reliable Predictive Capability, Time and Distance Information, Uncertainty Display, and 
Contextual Information to ensure that development proceeded with the most critical user needs 
already addressed while awaiting additional feedback.  

 

5.2. FIM Uncertainty and Evaluation Metrics 

The uncertainty scenarios for each forecast horizon were integrated into the Flo-NAVSAFE 
web app through the Forecast page, where users can toggle between flood maps for 1-hour, 2-
hour, and 10-hour lead times. Each forecast, except for the 10-hour lead times, displays both a 
most likely and worst case scenario, helping responders see what is expected to flood and what 
could flood under more severe conditions. Low-water crossings and address points are labeled 
and color coded as Safe or Flooded based on the selected FIM layer, providing instant visual 
feedback. The 10-hour lead time forecast layer highlights all areas that may be at risk using the 
maximum values across the ensemble to generate the FIM, thus aiding in the support of 
proactive planning. This option is illustrated in the application interface shown in Figure 7. 

Figure 42 shows the evaluation of our HAND-FIM for July 4 - 7, 2015 in Travis County against 
the NWM analysis assimilation with data assimilation for the same day.  

 

 
2 Figure 4a shows only a portion of Travis County. The entire watershed was too large to view well in this report 

context. 
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(a) 

 

(b) 

Figure 4. NWM Short range forecast evaluation against NWM analysis assimilation with USGS data assimilation; 
(a) Visual representation of True Positives (Dark Blue), True Negatives (Grey), False Positives (Green) and False 
Negatives (Red) (b) Performance metrics of our FIM against the NWM analysis assimilation with DA FIM, CSI = 
0.88, FAR = 0.0008, POD = 0.98. 

Table 1 shows the CRPS and Percentage Bias of the NWM short range forecast against the 
instantaneous USGS gauge data for 14th July 2025 at 4 PM UTC3. Table 2 shows the KGE and 
NSE of the NWM Retrospective Data against the mean of the 15 minute USGS instantaneous 
values for 9th May 2015. The percentage bias indicates that the NWM tends to underestimate 
streamflows, the negative NSE values suggest poor model accuracy and limited predictive skill, 
the negative KGE values demonstrates that the NWM struggles to accurately capture the 
variability, correlation, and bias of the streamflows, while the CRPS also demonstrates poor 
accuracy and precision of the short range forecast ensemble. 

Table 1. CRPS and Percentage Bias of the NWM short range forecast against the instantaneous USGS gauge data 
for 14th July 2025 at 4 PM UTC 

USGS Site 
Number 

NWM Feature 
ID 

Percentage Bias CRPS1 

08105872 5671619 -35.84 1.72 

08105886 5673157 -28.52 0.039 

08158700 5780099 22.34 0.027 

1 CRPS ranges from 0 to +∞, the closer to 0, the better.  

Table 2. KGE and NSE of the NWM Retrospective Data against the mean of the 15 minute USGS instantaneous 
values for 9th May 2015 

USGS Site 
Number 

NWM Feature 
ID 

NSE KGE 

08105872 5671619 -0.59 0.052 

08105886 5673157 -25.70 -3.32 

08158700 5780099 -0.087 0.43 

 
3 This was the current time when this evaluation was made. 
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Using the incident reports provided by TCSO for July 4 - 7, 2025, we determined how close 
incident locations4 are from flooded polygons as seen in Figure 5. ~71% of recorded incidents 
were within 300 m of flood polygons. This buffer zone represents the uncertainty in caller 
geolocation triangulation as well as the distance between caller and the actual flood inundation. 
Reported incidents within this buffer zone are assumed to be captured by HAND-FIM. 

 

 

Figure 5. Distance from reported flood incidents (July 4–7, 2025) to the nearest Flood Inundation Mapping (FIM) 
area. Each blue dot represents a flood report, sorted in ascending order by its proximity to the nearest FIM polygon.  

5.3. Demonstrated Capabilities of FLO-NAVSAFE 

FLO-NAVSAFE (FLOod NAVigation & SAFEty for Emergency Responders) is an operational 
decision support tool designed to support real-time flood awareness and response. Figure 6a 
displays the Home page of the developed application. The Home page of the FLO-NAVSAFE 
was designed to support real-time (nowcast) flood monitoring by integrating a live feed of flood 
inundation data from the NWM Dynamic FIM service. This feature service is updated hourly. 
It is visualized on the map as red polygons representing areas of inundation.  

Users can zoom into any region of interest for a more detailed view of these polygons. A Table 
component is provided, which populates the flood polygons across CONUS upon interaction, 
with built-in filtering options. The Query tool allows users to draw a polygon around any desired 
area to retrieve a list of flooded locations within the selection. The Legend clearly indicates the 
symbology used for each layer on the map. The Map Layers panel displays all available layers, 
with key ones (such as low water crossings, Travis County watershed boundary, and flood 
inundation polygons) enabled by default. Users can toggle additional layers as needed. A 
Basemap Selector is also included, allowing users to switch between different basemap styles.  

Navigation is user-friendly: users can zoom using the mouse scroll wheel or the on-screen zoom 
controls and return to the default map extent using the Home button. Additionally, the 
Directions Widget enables users to generate routes, view distances, and estimate travel time from 
their current location or any specified address to another point of interest. Address inputs can 
include standard U.S. addresses, address points within Travis County, or the locations of low 
water crossings.  

 
4 Caller locations were assumed to be incident locations by TCSO. Callers included residents of Travis County as 

well as TCSO deputies. 
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(a) 
 

(b) 

Figure 6. FLO-NAVSAFE desktop and mobile configurations (a) Desktop configuration of the home page of  Flo-
NAVSAFE, displaying the main interface and core interactive widgets. Key functions are labeled, including zoom controls, 
home button, table view, query tool, direction widget, legend, map layer toggles, and basemap selector. (b) Mobile view of 
the historical page for the July 4, 2025 flood event showing the maximum NWM FIM extent over the entire flood event 
and the TCSO reported flood incidents. 

Figure 7 presents the Forecast page, which was designed to visualize flood uncertainty by 
displaying both most likely and worst-case flood scenarios. This page provides forecasts for 1-
hour ahead and 2-hours ahead conditions, with the most likely scenario in orange and the worst-
case scenario in red. Additionally, a separate forecast is included for the worst-case scenario over 
the next 10 hours, offering extended outlooks for planning and preparedness. By default, both 
the most likely and worst-case forecast layers are activated.  

Users can toggle these layers on or off using the Map Layers control to tailor the visualization 
to their needs. The low water crossings layer is also enabled by default, using purple to represent 
flooded crossings and green for safe ones. These indicators provide immediate visual feedback 
on roadway conditions under different forecast scenarios.  

Complementing the map, interactive charts display the number of low water crossings and 
address points to be inundated under each forecast (1-hour, 2-hour, and 10-hour). To support 
analysis and reporting, users can export the chart data as CSV files, which include the number 
of flooded and safe low water crossings and address points, disaggregated by districts. 
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Figure 7. Forecast page of the Flo-NAVSAFE, displaying predicted flood inundation areas and low water crossings. 
The map visualizes flood scenarios alongside flooded (purple) and safe (green) low water crossings. The interactive bar charts 
below summarize the number of inundated and safe address points and low water crossings by county, supporting short-term 
flood impact assessment for the next 1 to 10 hours. 

5.3.1. Impact Visualization 

We analyzed five socioeconomic vulnerability indicators including age, income, disability, 
internet access, and vehicle ownership across five law enforcement jurisdictions in Travis 
County: Adam, Baker, Charlie, David, and Others. The “Others” district showed the highest 
vulnerability, with 40.4% of the population aged 85 or older, 27.2% of households below the 
poverty line, 40.1% including at least one person with a disability, and nearly one-third lacking 
both internet and a vehicle. Baker followed closely, with 44.6% of households below the poverty 
line and similarly high levels of limited internet and vehicle access. David had 29.7% of its 
population aged 85 or older but moderate vulnerability otherwise. Adam and Charlie showed 
consistently lower vulnerability levels. The analysis reveals that areas with higher poverty also 
tend to have higher disability rates and reduced access to internet and transportation, increasing 
their flood-related risks due to overlapping vulnerabilities that may significantly hinder 
evacuation and recovery. Detailed social vulnerability maps are provided in Supplementary 
Material S3. 

Our analysis also identified 114 Environmentally Sensitive Critical Infrastructure (ESCI) facilities 
under the National Pollutant Discharge Elimination System, including 99 Industrial Stormwater 
Dischargers and 10 Publicly Owned Wastewater Treatment Works. The Toxics Release 
Inventory program includes 44 TRI Reporter facilities, while the Safe Drinking Water 
Information System lists 37 facilities with 33 Water Treatment Plants and 4 Community Water 
Systems. Hazardous waste sites account for 21 entries, including 12 Transporters, 6 Large 
Quantity Generators, and 3 Transfer Facilities. One landfill is also present. The most common 
facilities are Industrial Stormwater Dischargers (99), TRI Reporters (44), and water system sites 
(33). These facilities are vital to public health and are especially vulnerable during floods, which 
can trigger chemical releases or water contamination. A detailed ESCI map is provided in 
Supplementary Material S3. 
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5.3. Limitations 

5.3.1. Issues with HAND-FIM and Rating Curves 

A significant technical limitation in our approach stems from the use of HAND-based flood 
inundation mapping and synthetic rating curves. While the HAND method enables rapid and 
scalable flood estimation, it relies on simplified assumptions, such as uniform flow, no lag time 
and constant slope, which may not hold true in urban settings or complex river networks. 
Similarly, the rating curves used to convert streamflow into stage height are often synthetic and 
uncalibrated, which can introduce errors in the estimated inundation extent. Furthermore, 
HAND-FIM only models fluvial flood events; it excludes compound flooding. HAND-FIM also 
underpredicts smaller catchments (4th order and lower) and overpredicts for larger reaches [33].  

 

5.3.2. Server Issues for Automation 

The Home page remains fully functional through automatic updates from the NWM Dynamic 
FIM service, which refreshes approximately every 55 minutes. In contrast, the Forecast pages 
rely on automated workflows for downloading discharge data and generating FIMs. Since FIM 
generation is performed using ArcGIS Pro, automation currently requires a computer with 
ArcGIS Pro installed. At present, a local machine at The University of Alabama runs this 
workflow using Windows Task Scheduler to execute an arcpy script within a cloned ArcGIS 
Python environment. To enhance scalability and reliability, a future improvement would involve 
migrating this automation to the cloud, such as Amazon Web Services (AWS), where ArcGIS 
Pro is now supported. 

 

5.3.3. Benchmark for FIM evaluation 

Another key limitation is our lack of benchmarks for validating HAND-FIMs generated on our 
event dates. Our “benchmark” was also HAND-FIM generated using the NWM analysis 
assimilation with data assimilation, which assimilates observed meteorological forcings as well 
as discharge from USGS gauges, representing the best possible estimate for current conditions. 
This “benchmark” is also subject to model uncertainty as well as the uncertainty in HAND and 
synthetic rating curves. 

 

5.3.4. Latency 

A primary limitation of the system is latency, the delay between actual hydrologic conditions and 
when they appear in the app. This results from the NWM forecast latency, forecast posting 
schedule, data transfer from the AWS S3 bucket (typically ~25 minutes post-forecast), FIM 
generation in ArcGIS Pro, and upload to ArcGIS Online, all of which can take an additional 40 
minutes. Consequently, the 1-hour forecast may reflect conditions that are now happening and 
the next 2-hour might be more reliable for the next hour. Also the live FIM from NWM used 
for the home page has a latency of 55 mins and it is updated every hour [34]. 
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5.3.5. Incidents outside Flood Polygons 

In Figure 5, ~71% of incidents reported during the July 4 - 7, 2025 events in Travis County 
were within the defined 300m buffer zone. The remaining 29% could be on other flowlines not 
captured by the NWM due to the coarseness of the 10 m resolution digital elevation model used 
to define the flowlines used in generating our HAND-FIMs, which reduces its usability for 
community-level applications, particularly in urban settings such as Travis County. 

5.3.6. Limitations of ACS-Based Demographic Estimates 

As with any survey-based dataset, the ACS provides estimates of socioeconomic and 
demographic characteristics rather than exact population or household counts. These estimates 
are subject to uncertainties stemming from sampling error, non-response bias, measurement 
error, and occasional changes in survey methodology. 

 

6. Conclusion 

FLO-NAVSAFE serves as a proof-of-concept for a scalable decision support tool that distills 
forecast science into actionable insights for emergency responders by incorporating their needs 
into the design process. Future work should focus on refining automation, reducing latency, and 
enhancing ground-truthing methods for evaluation. FIM generation could also be improved by 
replacing HAND with better low complexity models such as Kansas’ FLDPLN (Floodplain) 
model for nowcasts [35]. In addition, incorporating work on the densified network using NWM 
runoff, Muskingum routing, and data assimilation (as seen in Chapter 5) would improve the 
precision of forecasts for local decision making. We would also recommend incorporating data 
from other existing tools used by Travis County such as ATX Floods to make the platform more 
robust and locally relevant.  
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Supplementary Materials:  

The data used in this report, supplementary information documents containing additional 
methodological details as well as supporting results can be found here: 
http://www.hydroshare.org/resource/41b23520d92c4d6e8d7934f106e54fd3, 
http://www.hydroshare.org/resource/23aa7866ab614687811bb70ffb13fcfe and 
http://www.hydroshare.org/resource/c95e654312204ce0b4d8e31e71cd4354.  

All Python notebooks and scripts created for this project can be found here: 
https://github.com/Kaysharp-cloud/Flo_NAVSAFE  
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Abstract: Accurate flood forecasting is critical for hazard response and the mitigation of human, 
infrastructure, and economic losses. The National Water Model (NWM), developed by the 
NOAA Office of Water Prediction, National Water Center, provides nationwide hydrologic 
forecasts, including flood inundation extents. However, its stream network, derived from a  
10 m resolution digital elevation model, is too coarse for community-level applications, 
particularly in urban settings such as Travis County, Texas. Here, we investigate how stream 
network density impacts simulated discharge and inundation extent and quantify the potential 
benefits of downscaling NWM runoff outputs onto a higher-resolution stream network. While 
only ~27% of low-water crossings in the county lie within 45 m of stream reaches in the NWM 
network, ~89% are captured within the same proximity in the densified network. Modeled 
streamflows were produced for reaches in the original NWM and the densified stream networks 
within the Shoal and Waller Creek watersheds by routing NWM runoff outputs using 
Muskingum routing and data assimilation schemes. For a heavy rainfall event on July 4 – 7, 2025, 
streamflow estimates from the densified network model (KGE = 0.31) are more similar to 
observed gauge data (withheld from data assimilation) than those from the original NWM 
network model (KGE = -0.27). During the peak of the event, the flood inundation extent 
estimated using the NWM network model was 0.35 km² (total reach length = 32.6 km), 
compared to 1.04 km² (total reach length = 69.3 km) for the densified network model. While 
inundations for the NWM network were smaller in some locations and larger in others, the 
densified network produced smoother and more continuous inundation patterns. 

 

 

1. Motivation 

Flooding is the deadliest severe weather hazard in the United States, costing between $179.8 
billion and $496 billion each year [1], [2]. Texas experiences a higher number of floods and 
vehicle-related flood fatalities than any other U.S. state [3], [4]. Many factors contribute to the 
increased number of fatalities, including the physical environment (e.g., geographic features, 
weather patterns, topography), highly urbanized areas, fast population growth, and an extensive 
road network, which includes culverts, bridges, and low water crossings [3], [4], [5].  
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These risks are particularly apparent to first responders in Texas who often have to navigate 
around dangerous flood conditions during active storms and/or after dark. In 2014, Senior 
Deputy Jessica Hollis of the Travis County Sheriff’s Department was washed away in her patrol 
car while checking roadways for high water [6]. Tragic accidents such as this emphasize the need 
for accurate and timely forecasting of floods, paired with communication of the associated risks, 
to mitigate associated catastrophic human, property, and economic losses. 

The accuracy of flood inundation forecasts depends greatly on the reliability of the hydrologic 
and hydraulic modeling framework. A range of hydrologic models has emerged in recent years, 
spanning both process-based and data-driven approaches [7], [8]. Among these is the National 
Water Model (NWM), which provides streamflow forecasts for over 2.7 million river reaches in 
CONUS [9]. Although its spatial coverage is extensive, the current NWM stream network 
produces data that is too coarse for real-time decision-making at the community scale. In this 
report, we employ NWM runoff, Muskingum routing, and Kalman Filter data assimilation to 
estimate streamflow for a portion of the Travis County densified stream network (Figure 1) to 
model flooding at the street scale. 

 
Figure 1. Map of NWM stream network and densified stream network for the watersheds in Travis County, Texas. 

 

2. Objectives and Scope  

This study aims to downscale NWM streamflow to a higher resolution stream network to 
improve flood response capabilities in urban areas where greater spatial detail is needed for 
emergency planning and response. Travis County, Texas, was selected as the study area due to 
(1) its vulnerability to flash flooding and (2) large number of low water crossings on small streams 
outside of the NWM network in the county. Our study addresses the research question: How 
does stream network density influence discharge and flood inundation extent during heavy 
rainfall or flood events? To investigate this, a densified stream network was prepared for the 
Shoal and Waller Creek watersheds in Travis County. Discharge outputs from the NWM analysis 
and assimilation open-loop configuration were used to drive Muskingum routing and Kalman 
Filter data assimilation schemes and applied to two versions of the stream network: the original 
NWM network and the densified network for Shoal Creek and Waller Creek. By comparing 
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simulated stream discharges in each network against nearby observed gauge data from the City 
of Austin’s Flood Early Warning System (FEWS), and flood inundation maps (FIMs) generated 
using the Height Above Nearest Drainage (HAND) method, we assess the potential benefits of 
downscaling NWM runoff to the community (i.e., county) scale. 

 

3. Previous Studies 

Currently, flood prediction from the NOAA Office of Water Prediction (OWP) comes from the 
NWM. In the operational configuration of the NWM version 3.0, WRF-Hydro simulates land 

surface processes at a 1 km resolution, with overland and subsurface flow routed on a 250 m 
grid across the contiguous United States (CONUS). The Muskingum-Cunge approach [9] is used 
to route flows over a stream network derived from the National Hydrography Dataset Plus 
Version 2 (NHDPlus V2; [10]). NWM uses the Medium Resolution NHDPlus to provide 
streamflow for over 2.7 million river reaches in CONUS [11]. While this represents extensive 
spatial coverage, the 1:100,000 scale flowlines employed are often too coarse for community-
scale applications. This limitation is especially critical in urban areas such as Travis County, 
Texas, where finer-resolution streamflow and flood inundation data are essential for effective 
emergency response and preparedness during flood events.  

NWM produces both data assimilation and open-loop analyses, which incorporate the best 
available observed forcings to drive simulations [12]. The nudging-based data assimilation 
approach used in the NWM has been shown to only improve streamflow estimates downstream 
of gauge stations [13]. Previous work introduced an alternative data assimilation framework that 
combines Muskingum routing with Kalman filtering, which demonstrated superior performance 
compared to the current nudging approach employed by the NWM [14]. Our research does not 
aim to evaluate the performance of the Muskingum routing or data assimilation techniques, as 
these have been established in previous works [15], [16], [17], [18]. Instead, it builds on previously 
developed schemes [14] and establishes a methodology for applying coarse-scale runoff from 
NWM catchments to a densified stream network, and assesses the potential benefits of 
downscaling NWM runoff to the community (i.e., county) scale. To the best of the authors’ 
knowledge, no such comparison has been made before. 

 

4. Methodology 

This study applies the routing and data assimilation schemes developed in previous works to a 
modified subsection of a high-resolution, densified stream network generated by the Texas 
Strategic Coordinating Office (TSCO), using overland flow and baseflow outputs from the 
NWM open-loop configuration as forcings. To evaluate differences between the NWM’s native 
stream network and the densified network, FIMs were derived for modeled peak flows using 
synthetic rating curves (SRCs) via the HAND method. New SRCs and flood data stack were 
generated for the densified stream network, while existing SRCs produced for the University of 
Texas at Austin’s Center for Water & the Environment and the Texas Division of Emergency 
Management’s Pin2Flood project [19] were used for the NWM stream network. The workflow 
for generating FIM on the densified network is summarized in Figure 2. The same workflow 
was used to prepare the NWM network model, excluding the calculation of area fraction. 
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Figure 2. Overall workflow for generating FIM on the densified stream network. 

 

4.1. Data and study area  

Travis County is located in Central Texas (Figure 3) and encompasses an area of ~395 km² 
(~1,023 mi²) [20] with a population of ~1.31 million people [21]. Austin, TX, the state capital 
and a major metropolitan area, is located within the county. We created FIM for four NWM 
stream reaches in Shoal and Waller Creek located in downtown Austin. A stream network of 
1510 reaches (henceforth referred to as the “more-densified” network) was produced based on 
known locations of infrastructure like sewers and culverts from the City of Austin, ground survey 
data from the Texas Department of Transportation (TxDOT), and prepared for analysis by Dr. 
Matt Bartos (University of Texas at Austin).  

 

Figure 3. Map of NWM stream network and densified stream network for the Shoal and Waller Creek watersheds 
Locations of USGS gauges and Austin Flood Early Warning System gauges used in the analysis are also shown.  
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Shoal and Waller creeks are highly urbanized catchments. Only 16% of stream reaches in Shoal 
and Waller creeks are natural streams (62% across the entire network). The rest are artificial flow 
paths, road-side ditches, ponds, and 63% are underground culverts and storm drains (19% across 
the entire network). For this study, these underground flow paths were assumed to behave as 
open channels for FIM. This data is displayed in Table 1.  

Table 1. More-Dense Network Stream Reach Classifications 

Stream 
Classification 

Shoal and 
Waller Creeks 

Entire Network 

Altered Earthen 112 5268 

Altered Road-
Side Ditch 

36 1976 

Altered 
Structural 

54 1676 

Artificial 
Flowpath 

71 625 

Concentrated 
Flowpath 

3 593 

Natural Alluvial 71 1604 

Natural Rockbed 152 1308 

Natural 
Unclassified 

18 36652 

Pond 47 936 

Underground 
Culvert 

158 9525 

Underground 
Stormdrain 

788 2472 

Waterbody 
Centerline 

0 679 

 

Instantaneous discharge data from 3 U.S. Geological Survey (USGS) stream gauges, accessed 
using the dataretrieval package in Python [22], were used for data assimilation. Model outputs 
are validated with stage data from a City of Austin Flood Early Warning System (FEWS) gauge. 
Table 2 summarizes the USGS gauges used for data assimilation and the FEWS gauge used for 
validation. For this study, we model a flood event on July 5th, 2025. 
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Table 2. Summary of gauges used for data assimilation and validation.  

Data Provider Gage ID Use 

USGS 08156675 Data Assimilation 

USGS 08156800 Data Assimilation 

USGS 08156910 Data Assimilation 

Austin FEWS 248 Validation 

 

4.2. Updating NWM Runoff Using Muskingum Routing and Kalman Filter  

The Muskingum model and data assimilation code were prepared by the Future Water Systems 
Lab and are available at: https://github.com/future-water/tx-fast-hydrology. Runoff (i.e., 
streamflow, qBucket, and qSfcLatRunoff) from the National Water Model open-loop analysis 
and assimilation product was routed through the densified network using the Muskingum 

method. The current outflow, 𝑄𝑗+1
𝑡+𝛥𝑡, at a reach 𝑗 is a function of the previous timestep outflow 

(𝑄𝑗+1
𝑡 ), current inflow (𝑄𝑗

𝑡+𝛥𝑡), previous timestep inflow (𝑄𝑗
𝑡), and lateral inflow (𝑞𝑗

𝑡), given by  

the equation:  

𝑄𝑗+1
𝑡+𝛥𝑡  =  𝛼𝑗𝑄𝑗

𝑡+𝛥𝑡  +  𝛽𝑄𝑗
𝑡  +  𝜒𝑄𝑗+1

𝑡  +  𝛾𝑞𝑗
𝑡  (1) 

The variables 𝛼, 𝛽, 𝜒, and 𝛾 are described by:  

𝛼 =  
𝐾𝑋 + 𝛥𝑡/2

𝐾(1−𝑋) + 𝛥𝑡/2
    (2) 

𝛽 =  
𝐾𝑋 − 𝛥𝑡/2

𝐾(1−𝑋) + 𝛥𝑡/2
    (3) 

𝜒 =  
𝐾(1−𝑋) − 𝛥𝑡/2

𝐾(1−𝑋) + 𝛥𝑡/2
    (4) 

𝛾 =  
𝛥𝑡

𝐾(1−𝑋) + 𝛥𝑡/2
    (5) 

where K is the flood wave travel time in the reach [s], 𝛥𝑡 is the simulation time delta, and 𝑋 is 
the wave attenuation constant.  

      𝐾 =  𝛥𝑥/𝑐    (6) 

𝑋 =  0.5 [ 1 − 𝑄 / (𝑐 𝐵 𝑆 𝛥𝑥) ]   (7) 

where  𝛥𝑥 is the length of the reach, 𝑐 is the kinematic wave celerity (2.12 m/s), 𝑄 is discharge, 

𝐵 is the cross-sectional top-width associated with 𝑄, and 𝑆 is the energy slope approximated by 

the water surface slope [17], [18], [23]. For a large system of reaches, the Muskingum equations 
are expressed in the state-space form:  

𝑥𝑡+𝛥𝑡  =  𝐴𝑥𝑡  +  𝐵𝑢𝑡   (8) 
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A deterministic Kalman Filter approach is applied to the state-space model at the start of each 
forecast window to correct the runoff input. A Kalman Filter minimizes the mean squared error 
between the true and estimated states by assuming that measurement (i.e., gauge data) and 
process (i.e., model) noise follows a Gaussian distribution with known covariances, and that the 
initial error covariance is known. The equation for the state-space Muskingum routing model 
with data assimilation is:  

𝑥̂𝑘+1  = 𝐴𝑘𝑥̂𝑘  +  𝐵𝑘𝑢𝑘  +  𝐿𝑘+1(𝑦𝑘+1  −  𝑦̂𝑘+1)   (9)  

where 𝐿 is the Kalman gain, 𝑦 is the sensor measurement, and 𝑦̂ is the modeled output.  

 

4.3. Preparation of the Densified Network Model   

Flowlines in the more-densified network were separated into individual segments based on their 
channel and infrastructure type rather than the contributing watershed. Many flowlines were less 
than 1 km in length (Figure 4). To support rating curve generation, short channel segments are 
aggregated by first identifying headwater locations for all known streams and then manually 
selecting origination points to combine shorter streams to create an overall stream density that 
is valid for floodplain modeling purposes. We chose 2 km/km2 (3 mi/mi2) for this study, but the 
appropriate density for other networks should be selected by the analyst. 

 

 
Figure 4. Histogram of the number of stream segments by length (in km) for the more-densified network.  

 

Flowpaths are derived from a Texas Geographic Information Office (TxGIO) digital elevation 
model (DEM) of ~0.3 m (~1 ft) spatial resolution [24]. The DEM is hydroconditioned using a 
technique provided by Dr. Dean Djokic (ESRI). Since the more-densified network was derived 
from surveyed data for pipe locations rather than a DEM, extensive hydro-conditioning was 
required to use this network for FIM generation. As part of the hydro-conditioning, the 
streamlines were “burned” into a bare-earth LIDAR DEM to weight flow routing in favor of 
the network. Flow direction and accumulation are calculated, and flow routed through this 
network from the starting nodes. A length limit of ~914 m (3,000 ft) was specified for creating 
the vectorized streamlines. Stream reaches were decreased from 1510 to 58. 

The aggregated flowlines (henceforth referred to as “densified network”) were used to create 
new model input files to run the Muskingum routing model. The first of these inputs described 
the relationship between the densified network catchments and the NWM catchments based on 
the fraction of the NWM catchment occupied by the densified catchment. Catchment areas were 
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computed in ArcGIS Pro and the “tabulate intersection” tool was used to calculate the percent 
area for each sub-catchment. NWM runoff was partitioned to the densified catchments within 
each NWM watershed based on their fractional area prior to Muskingum routing.  

The second required input file described the stream network topology (i.e., channel length) and 
spatial locations, Muskingum parameters (K and X), and connections between stream channels. 
The appropriate timedelta for the model was determined using the stability condition:  

𝛥𝑡 ≤  2 𝐾(1 − 𝑋)    (10)  

where 𝑋 is defined such that 0 < 𝑋 ≤  0.5. We adopted 𝑋 = 0.25 for every reach. Due to 
differences in the minimum channel length in each network, the model timedelta was set to 120 
seconds for the NWM network input and to 20 seconds for the densified network input. Input 
files created for other stream networks should include computation of an appropriate timedelta 
using this stability condition. USGS gauge data used for data assimilation were resampled to 
match the model simulation’s time step.  

4.4. Development of Synthetic Rating Curves and the Flood Data Stack for the Densified Network  

The methodology for developing the SRCs and flood stack for the densified stream network was 
provided by Dr. Dean Djokic (ESRI). Flood extents were generated at incremental heights 
derived from the DEM using the HAND methodology. SRCs were generated from the HAND 
raster using the default values for slope (0.0015) and roughness (Manning’s n = 0.045). The 
outputs from this process were a set of SRCs for unique flowlines within the densified network 
and a flood data stack containing flood inundation extent polygons for each flowline for a range 
of depth values (as integers) between ~0.3 m and 24 m (1 and 80 ft).  

Flood inundation extent for the modeled streamflows was estimated using the SRCs and the 
flood data stack. Peak streamflows corresponding to each unique stream segment over the 
selected event period were identified from the model output and converted to stage height using 
the corresponding SRC. The stage height for each stream segment was rounded up or down to 
the nearest integer value and used to select the flood inundation polygon from the flood data 
stack that best matched the stage height for each stream segment. Flood inundation polygons 
corresponding to the stage height in each stream segment were combined into a single polygon 
layer of flood inundation (i.e., FIM).  

 

5. Results 

5.1. The Densified Network 

Estimation of flooding at low water crossings is of particular importance in Travis County due 
to their contribution to road flooding and risk to drivers during flooded conditions [3].  
However, many recorded flood events and low-water crossings in Travis County do not fall near 
NWM flowlines. Only 27% of low-water crossings (Figure 5c) and 1% of reported flood 
incidents (Figure 5d) are within 45 m (150 ft) of a NWM stream reach. In contrast, 89% of low-
water crossings and 11% of reported flood incidents are within 45 m (150 ft) of a more-densified 
stream reach (Figure 5c, 5d). The mean distance from a low-water crossing to a streamline is 
approximately 846 m for the NWM network and 60 m for the more-dense network (Figure 5a). 
The mean distance for reported flood incidents is approximately 1338 m for the NWM network 
and 420 m for the more-dense network.  
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Figure 5. Distance from low water crossings (left) and flood events (right) from nearest NWM flowlines (blue) and 
Densified Network flowlines (light-blue) in Travis county, Texas. Flood event records were provided by the Travis County 
Sheriff’s Office (TCSO) for 2015, 2016, 2022, 2023, 2024, and the May 28th and July 4th weekend floods. 

5.2. Performance of the Densified Model Streamflow Estimation  

Austin FEWS data was withheld from data assimilation and used to compare modeled and 
measured streamflows. Most FEWS gauges record stage height, but no measured rating curves 
are available to convert them to streamflow. One of the FEWS gauges in the Shoal and Waller 
Creek study region (FEWS ID 248) recorded both stage and discharge. Figure 6 compares the 
modeled vs measured discharge for the nearest stream reach for each network corresponding to 
this gauge. The resulting Kling-Gupta efficiency (KGE) for the NWM network model and 
densified network model are -0.27 and 0.31, respectively. KGE values greater than -0.41 indicate 
that the model performance is better than using the mean of the observations, and a KGE closer 
to 1 indicates a better match between modeled and observed data [25]. For the heavy rainfall 
event on July 4 – 7, 2025 event considered for this comparison, both KGE values were greater 
than -0.41 and the densified network reach showed improved performance over the NWM 
network reach compared to the observations.  
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Figure 6. Comparison between measured discharge at FEWS gauge ID 248 (red), compared to modeled discharge from 
the nearest stream reach in the densified network model (light blue) and NWM network model (dark blue). 

5.3. Comparison of NWM FIM and Densified Network FIM  

During the heavy rainfall event on July 4 – 7, 2025, the NWM network model produced a smaller 
inundation extent compared to the densified network model for peak flows in Shoal and Waller 
Creeks (Figure 7a-d). Within the study area, the total stream length in the NWM network is 
32.6 km, while that of the densified network is 69.3 km. For the peak flow event, the resulting 
flood inundation extent was 0.35 km² using the NWM network and 1.04 km² using the densified 
network. Thus, the NWM-based inundation extent represents approximately 67% of that 
produced by the densified network, while covering only about 53% of the densified network’s 
total stream reach length. The flood inundation extent derived from the NWM network is, in 
some locations, larger than that from the densified network (e.g., Figure 7b), and in other areas, 
smaller (e.g., Figure 7c middle right panel). Overall, the inundation patterns produced using the 
densified network appear smoother and more continuous, likely due to the use of higher-
resolution topographic data (i.e., 0.3 m DEM rather than 3 m DEM).  

 

Figure 7. FIMs generated using the densified stream network overlaid on the NWM stream network for the July 4–7, 
2025 heavy rainfall event in Shoal and Waller Creek (a). The right panel (b-d) presents zoomed-in views of selected 

locations, illustrating differences in spatial extent and alignment between the two networks. 
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5.4. Limitations  

5.4.1. Stream Network Creation  

This work demonstrated the potential to combine an existing high-resolution stream network 
using DEM-created flowpaths to create a densified stream network suitable for modeling 
streamflows at the community scale. However, it is still unclear what level of densification 
provides the best tradeoffs between computational time and model performance; future work 
should explore this. The fact that the more-densified network was not derived from a DEM was 
a serious limitation to its practicality. Flow paths derived from the DEM, which were needed for 
flood-stack generation, did not always follow the surveyed network, even with heavy hydro-
conditioning biasing flow routing through it. The creation of future densified networks must be 
heavily informed by DEM-derived flow routing. Ongoing efforts to generate more detailed 
stream networks based on high-quality DEM data, such as the USGS 3D Hydrography Program 
(3DHP) [26], present a promising alternative for preparing a densified stream network for 
modeling streamflows and flood inundation. An additional consideration is what types of flow 
paths should be included in the modeling streams. The more-densified network included 
culverts, underground storm drainage, and artificial flow paths. The inclusion of these flowpaths 
requires different assumptions about flow velocity, roughness, and flood inundation compared 
to natural surface flowpaths. For this study, all densified flowpaths were assumed to behave as 
open channels, but this assumption should be evaluated by future work.  

Refining the original, more-densified network to the densified network used in this study 
included several steps that could not be automated. Subsetting of the origination points for each 
stream reach was done manually to select the desired network density, meaning that the output 
will vary somewhat based on the analyst who performs it. The same consideration applies to the 
selection of stream split points at confluences and along longer reaches. Selection of channel 
segment length can impact the performance of SRCs and the outcome of the HAND method 
[27]. Channel segments that are too short can lead to catchments of impractical size, while those 
that are too long suggest unrealistic assumptions of uniform discharge and water depth along a 
channel [28]. Despite this, there is limited guidance on the preferred channel segment length for 
deriving SRCs. SRC performance is also decreased in urbanized environments [29], and local 
changes in terrain or flowpaths due to human activity (e.g., construction, flood control) may not 
be represented by HAND rasters used to estimate flood inundation.  

 

5.4.2. Synthetic Rating Curves and Use of the HAND Method for FIM Generation 

The HAND method is recommended for flood mapping that is aimed at guidance and not cell-
by-cell decision making [30]. The quality of topographic data and accuracy of friction coefficients 
in the SRCs affect the performance of simulated flood inundations, particularly in flat terrain 
[31]. The generation of SRCs is the source of the most error. Currently, the skill of the HAND 
method is more limited by the terrain and SRCs than by NWM accuracy. The HAND method 
tends to underestimate flooded area at the floodplain level and overestimate at the catchment 
scale, likely due to underprediction in lower-order reaches [30].  

HAND only produces inundation from the nearest flowpath and is unable to source inundation 
from multiple fluvial sources [32]. This is a key limitation for a densified stream network where 
flowlines may be closer together. Furthermore, the current HAND method projects the water 
surface from the nearest stream across the landscape, disregarding hydraulic conductivity [33], 
the travel time of water coming out of the bank, and the wave propagating to the edge of the 
floodplain [34]. This is particularly important for operational flood forecasting in urban areas, 
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where this lag may result in overestimation of flood inundation at the predicted timestep, 
therefore decreasing the reliability of flood warnings and communication.  

5.4.3. FIM Comparison Between Networks 

While the current analysis compared FIMs from the NWM network to the densified network, 
we did not account for uncertainties in the SRCs and the generation of the HAND resulting 
from the differences in DEM resolutions. The floodstacks created from HAND rasters were 
generated at discrete intervals so measured or modeled stage heights in each reach were rounded 
up or down to whole integer values to match the nearest flood inundation polygon. Due to 
limitations on processing time, the intervals used to generate the flood polygons at stage heights 
greater than 3.66 m were different in each network, so different rounding methods were used to 
match the modeled stage heights to the flood inundation polygons. This may result in under or 
overestimation of flood inundations during higher flows in the densified network model if stage 
heights fall between large gaps in available floodstack polygons.  

While both models used the same input data to force the Muskingum routing, the NWM network 
model assigns catchment runoff to each corresponding reach, whereas the densified network 
model assigns these values to each subcatchment based on their percent contributing area to the 
original NWM catchment. The accuracy of sub-catchment delineation will impact the 
partitioning of these flows in the densified network model. Future work should explore these 
uncertainties to improve the comparisons between FIMs generated for each network. 

5.4.3. Validation and Benchmarks  

Validation of streamflows using stage height data from the Austin FEWS gauges was limited by 
the reliability of the SRCs generated for the modeled reaches. Measured rating curves for these 
gauges are not available; however, the City of Austin FloodPro website provides HEC-RAS 
models for each of these reaches. These models could be used to generate rating curves for each 
gauge location as an alternative to using SRCs. This approach should be explored to improve 
validation of the modeled discharge within the study region.  

While we were able to produce FIM for each network, we were not able to validate these extents 
using benchmark data. Future work should incorporate additional data on measured flood 
extent, such as remote sensing observations of flooding and associated damages or 
measurements of high water (e.g., incident reports, crowdsourced data, high water marks). 
Flooded roadway records from the Travis County Sheriff’s Office (TCSO) are available for 
Travis County, however, none of the records overlapped the watersheds used in this analysis. 
With sufficient resources and using the methodology outlined here, a densified network can be 
produced for other watersheds in Travis County that include these data. 

 

6. Conclusion 

Communicating flood hazards for operational use at the community-scale is critical for flood 
hazard response and preparedness. Estimation of flood inundation at a densified-network scale 
has the potential to provide more realistic estimates of flood impacts on roadways and 
infrastructure and facilitate more widespread adoption of NWM products by end users working 
at local and regional scales. This work demonstrates an approach for estimating flood inundation 
on a densified stream network in Travis County, TX, using NWM runoff, Muskingum routing, 
and data assimilation.  
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More work is needed to build upon the foundation that has been laid by this research. We 
recommend that future work prioritize: (1) unification of the methodology used to produce the 
NWM network and densified network, (2) comparison of modeled streamflows and FIM to in-
situ and benchmark data, (3) expansion of the densified network model to other parts of Travis 
County, and (4) operationalization, communication, and visualization of densified network FIM. 
Resolving the differences between the two networks and performing further validation of the 
modeled discharge will make comparisons between flood extent in each network more 
meaningful. In addition, expansion of the network to the whole of Travis County will accomplish 
the original goals of this project to improve understanding of flood hazards at the community 
scale and provide more use cases for NWM that go beyond research and show its efficacy for 
operational use. This includes assessing the trade-offs between added computational time for 
densified network FIM generation and improved estimation of flood hazards for situational 
awareness and hazard mitigation. While the current NWM network has vastly improved our 
understanding of flooding across the U.S., its operational use is limited by the scale of the stream 
network for which it produces data. Increasing the resolution of the stream network in NWM, 
such as to the scale of the densified network demonstrated here, will capture smaller streams 
and improve operational acceptance. This additional level of detail may change the way 
communities respond to flood hazards in the future by providing more granular and actionable 
guidance. Lastly, any communication and visualization tools resulting from this work should be 
integrated into existing flood early warning systems and emergency operations to ensure uniform 
communication to first responders and other end users.  
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Supplementary Materials: 

The code for the Muskingum model and data assimilation are available at: 
https://github.com/future-water/tx-fast-hydrology. The example analysis code provided by 
Matt Bartos for implementation and visualization of the Muskingum model and data assimilation 
are available at: https://github.com/future-water/cuahsi-summer-institute-2025. GIS layers for 
Travis County were provided by David Maidment and are available on HydroShare: 
http://www.hydroshare.org/resource/c95e654312204ce0b4d8e31e71cd4354. Examples of the 
ArcGIS Pro analysis provided by Dean Djokic are also available on HydroShare: 
http://www.hydroshare.org/resource/23aa7866ab614687811bb70ffb13fcfe.  

The modified versions of this code used for the analysis outlined in this report are available at: 
https://github.com/oladojavictor/DensiFIMcation. Data used in this report are available at: 

https://www.hydroshare.org/resource/a1018cc65aa341deb3b0644023d793db/.  
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Appendix 

Team Leaders 

Operational Flood Inundation Mapping 

 

“I am a Professor at the University of Alabama, 
with a Ph.D. from the University of Newcastle, 
Australia. My research interests focus on flood 
inundation mapping, flood remote sensing and 
analysis, and global and continental riverine 
modeling. This marks my seventh involvement 
in the Summer Institute, with eight of my 
graduate students participating to date and nine 
journal papers published stemming from this 
collaboration. In my free time, I enjoy sailing, 
kayaking, hiking, and traveling.” 

Sagy Cohen  

 

Yinphan Tsang

 

“I am an Associate Professor at the University of 

Hawaiʻi at Mānoa. I am an ecological modeler with 
a great interest in linking hydrology with ecosystems. 
I investigate surface and subsurface water processes 
and their implications in fluvial ecosystems. I use 
varied statistical and modeling techniques to 
combine disparate spatial and ecoinformatics 
datasets, validated with field measurements, to 
describe complex interaction patterns between biotic 
and abiotic processes. Lately, my focus has been on 
extreme events and their applications in Hawaii 
floods, as well as their ecosystem implications.” 
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LSTM for NextGen 

 

“I am Assistant Professor at University of Alabama, 
Department of Geological Science. My research 
interests include large-scale hydro/hydro-dynamic 
modeling, machine learning for physical process 
representations and water resources for expanding AI 
infrastructure. Originally from California, I feel 
equally at home in Alabama. My favorite hobby is 
skateboarding, and I also enjoy chess, jazz, and 
philosophy.” 

Jonathan Frame 

 

Amobichukwu Amanambu 

 

“I’m Dr. Amobichukwu Chukwudi 
Amanambu, Assistant Professor of 
Geography at the University of Alabama. I 
apply machine learning and AI to study 
hydrological drought, floodplain dynamics, 
and river connectivity, examining how channel 
networks influence flood propagation, 
sediment transport, and drought resilience. I 
integrate LiDAR and IoT data to capture river 
corridor changes. I enjoy kayaking.” 
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Pluvial Urban Flooding 

 

Marouane Temimi 

 

 

 

 

“I am Gallaher Chair Associate Professor at 
Stevens Institute of Technology, Department of 
Civil, Environmental, and Ocean Engineering. 
My research interests include large- and small-
scale hydrology, remote sensing, and water 
resources management. I have worked in 
different countries throughout my career 
addressing different engineering and research 

challenges.”  

 

 

“I am a Postdoctoral Researcher at IIHR—
Hydroscience and Engineering, University of Iowa. 
My research interests include real-time flood 
forecasting, remote sensing of hydrologic processes, 
and the application of informatics in hydrology. 
Having experienced several natural hazards 
firsthand, I am committed to advancing predictive 
systems to improve forecasting lead time and 

support disaster preparedness.”  

Mohamed Abdelkader 

 

*Dr. Jonathan Frame also participated in this team 
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Visualization of Urban Road Flooding 

 

David Maidment 

“I am a Professor Emeritus of Civil Engineering at the 
University of Texas at Austin, where I served on the 
faculty for 38 years.  I proposed the idea of the 
Summer Institutes in 2014 and served as the technical 
director of the first three Summer Institutes in 2015-
2017.  I am interested in the development of better 
flood forecasting science and technology, and in 
better communication of the resulting warning 
information to those at risk during flood 
emergencies.” 

“I am the FloodID Product Lead for The 
Water Institute, based in Boulder, CO, 
leading product strategy and growth of our 
operational flood forecasting technology. My 
research interests include flood inundation 
mapping, early flood warning and operational 
forecasting, and technology transformation 
for varied applications. In my free time, I love 
hiking, gardening, and traveling.” 

 

Kelsey Mcdonough  
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Summer Institute Course Coordinators 
 

 

 

From left to right: Francisco Gomez and Parvaneh Nikrou. 
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Summer Institute Teams 
 

Chapter 1: A Comparative Analysis of Flood Inundation Mapping 
Forecasting Approaches: Quantifying Fidelity–Accuracy Tradeoffs and 
Bridging Gaps via Hybrid Deep Learning 

 

 

From left to right:. Faezeh Maghsoodifar, Md Shadman Sakib, Mohamed Mowafy and Haotian Wang  
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Chapter 2: Catchment behavior analysis by developing a spatial-temporal 
loss function on LSTM 

 

 

From left to right: Fatemeh Yavari, Habtamu Tamiru, Mohamad Ali Farmani and Arman Oliazadeh 
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Chapter 3: Investigating Approaches for Representing Pluvial Flooding 
within NOAA’s NextGen Modeling Framework 

 

 

From left to right: Samrin Sauda, Yogesh Bhattarai and Supath Dhital 
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Chapter 4: Demonstrating the Feasibility of ML-Based Pluvial Flood 
Mapping in Urban Settings 

 

 

From left to right: Adam Smith, Sadra Seyvani, Keivan Tavakoli and Mostafa Saberian 
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Chapter 5: Towards a Flood Navigation and Safety Decision Support Tool: 
A Pilot for Emergency Responders in Travis County, Texas 

 

 

From left to right: Ali Farshid, Kayode Adebayo, Nana Oye Djan and Saide Zand 
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Chapter 6: Estimating Flood Inundation Using a Densified Stream Network 
in Travis County, TX  

 

 

From left to right: Megan Vardaman, Alex Simpson and Victor Oladoja 

 


