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Preface 
 

This report summarizes the research conducted during the 2024 National Water Center 

Innovators Program Summer Institute (NWC-SI). The NWC-SI is the result of a partnership 

between the National Weather Service’s Office of Water Prediction (OWP) and the Consortium 

of Universities for the Advancement of Hydrologic Science Inc. (CUAHSI). OWP is a part of 

the National Oceanic and Atmospheric Administration (NOAA). CUAHSI is a 501(c)(3) 

nonprofit organization with a mission “to empower the water community and advance science 

through collaboration, infrastructure, and education.” The Cooperative Institute for Research to 

Operations in Hydrology (CIROH) facilitates the partnership between OWP and CUAHSI. 

Funding for the Summer Institute is provided by the National Oceanic and Atmospheric 

Administration (NOAA), awarded to the Cooperative Institute for Research on Hydrology 

(CIROH) through the NOAA Cooperative Agreement with The University of Alabama, 

NA22NWS4320003. 

Since 2015, the National Water Center (NWC) on the University of Alabama campus has hosted 

the NWC-SI every year. Graduate students come from different universities across the United 

States, and senior academic faculty, federal scientists, staff, private companies, and contractors 

meet in Tuscaloosa for seven weeks. This year, they worked on projects related to the NWC 

goals to support the Next Generation National Water Model (NextGen) framework.  

Student fellows establish teams based on shared research interests, and theme leads supervise 

them while they work on their projects. This year, the fellows formed seven teams, each of which 

addressed a specific research question. The projects included impact-based flood forecasting and 

mapping flood inundation, the development of applications for GOES satellite imagery-based 

snow water equivalent (SWE) prediction, and applied topics that join flood inundation mapping 

with social needs.  

In addition to their research, participants took part in social events and outings, forming lasting 

connections with their peers. Course Coordinators, both of whom were fellows in the past, 

offered assistance and support throughout the summer. For the fellows, the Summer Institute is 

more than a research program in that it fosters teamwork, networking, and the development of 

lasting friendships. 

Fellows 

The 2024 cohort included 24 graduate students from 14 different universities across the United 

States. They began their journey with virtual meetings, which culminated in a two-week boot 

camp on coding, data retrieval, and understanding the National Water Model. The fellows and 

theme lead hail from various academic departments, including civil engineering, geography, and 

earth sciences.  
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Themes and Theme Leads 

The NWC-SI 2024 themes and theme leads were: 

● The “Assimilation of Geosynchronous Satellite Imagery into NextGen for Improved 

Modeling” theme led by Jonathan Frame (University of Alabama). Additional technical 

support was provided by Fred Ogden (NOAA OWP), Dan Lindsey (NOAA), Andrew 

Bennett (University of Arizona), James Halgren (Alabama Water Institute), Alan 

Rhoades (Lawrence Berkeley National Lab), Nels Frazier (Lynker), Mike Johnson 

(Lynker), and Austin Raney (Lynker). 

● The “Flood Inundation Mapping (FIM) Uncertainty Analysis and Model 

Intercomparison” theme was led by Xingong Li (Kansas University) and Sagy Cohen 

(University of Alabama). Additional technical support was provided by Jude Kastens 

(University of Kansas, Kansas Biological Survey), James Halgren (University of 

Alabama), David Weiss (University of Kansas), Anupal Baruah (University of Alabama), 

Junho Song (University of Alabama), Fernando Salas (NOAA), Carson Pruitt (NOAA), 

and Royce Fontenot (NOAA). 

● The “Geospatial Data Integration to Identify High-flow Thresholds for Improved Flood 

Risk Characterization” theme was led by Kelsey R. McDonough (FloodMapp) and Sanjib 

Sharma (Howard University).  Additional technical support was provided by Sagy Cohen 

(University of Alabama), Anupal Baruah (University of Alabama), Dipsikha Devi 

(University of Alabama), Edward Clark (NWC), Carson Pruitt (NWC), Hemal Dey 

(University of Alabama), Sadra Seyvani (University of Alabama), and Wanyun Shao 

(University of Alabama). 

 

Project Summaries 

The 2024 NWC-SI projects are summarized below. Chapters 1-7 present the complete reports.  

1. Projects within the Assimilation of Geosynchronous satellite imagery Into NextGen 

For improved modeling theme:  

Chapter 1: “Leveraging Geosynchronous Satellite Imagery and Machine Learning to Predict the Magnitude and 

Extent of Snow water Equivalent”. This chapter leverages geosynchronous satellite imagery and 

machine learning to predict snow water equivalent (SWE) at the NextGen hydrofabric scale. The 

team developed convolutional neural network (CNN) and long short-term memory (LSTM) 

models using GOES-16 satellite imagery and in-situ SWE measurements from California. The 

LSTM model showed higher accuracy (Kling-Gupta Efficiency of 0.63) than the CNN model 

(0.52).  

Chapter 2: “Identifying Atmospheric Rivers on the West Coast of the United States with Geostationary 

Operational Environmental Satellite Imagery”. This chapter explores the identification of Atmospheric 

Rivers (ARs) along the United States West Coast using Geostationary Operational 
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Environmental Satellite (GOES) imagery. Employing a U-Net Convolutional Neural Network 

(CNN) and a Random Forest (RF) model, the research aimed to leverage GOES's high temporal 

and spatial resolution for accurate AR detection. The U-Net CNN, trained on labeled AR data, 

outperformed the RF model, achieving an Intersection over Union (IoU) of 0.23 compared to 

the RF model's IoU of 0.02.  

Chapter 3: “Probabilistic Streamflow Prediction Using the Model-Agnostic NextGen Framework”. This 

section shows the NextGen Framework to probabilistically predict streamflow within gauged 

catchments, focusing on three selected CAMELS. By implementing the Dynamically 

Dimensioned Search (DDS) calibration method for the Conceptual Functional Equivalent 

(CFE) Model and utilizing various forcing data, the research aims to enhance prediction 

reliability. The results demonstrated improved accuracy compared to USGS streamflow data. 

2. Projects within the Flood Inundation Mapping (FIM) Uncertainty Analysis and 

Model Intercomparison theme:  

Chapter 4: “Enhancing Remote Sensing Flood Inundation Mapping by Leveraging a Terrain-Based Model”. 

This chapter enhances flood inundation mapping using a hybrid approach combining remote 

sensing data with terrain-based models. Applied to the Verdigris River flood in May 2019, their 

method, FLDSensing, integrates satellite imagery and FLDPLN model data to accurately fill gaps 

caused by cloud cover. The results showed improved accuracy in flood extent and depth 

mapping compared to traditional methods. 

Chapter 5: “Flood Inundation Mapping Using Terrain-Based Models for Flash Floods due to Dam 

Operations”. This section evaluates terrain-based models, OWP HAND-FIM and FLDPLN, for 

rapid flood inundation mapping due to dam failures, comparing them with the HEC-RAS 

benchmark. The terrain-based models proved effective for near real-time mapping and 

scalability, though improvements in depth prediction are needed with a fast computation time. 

3. Projects within the Geospatial Data Integration to Identify High-flow Thresholds for 

Improved Flood Risk Characterization theme:  

Chapter 6: “Transition from Hazard to Impact-based Riverine Flood Forecasting”. This chapter presents 

an automated system for transitioning from hazard-based to impact-based flood forecasting. By 

using forecasted streamflow data from the National Water Model, the system generates Flood 

Inundation Maps (FIMs), calculates flood depths, and integrates a Social Vulnerability Index 

(SVI) to assess flood impacts.  

Chapter 7: “Leveraging Geospatial Data and Machine Learning to Predict Insurance-derived Flood Damage 

Cost”. This chapter uses eXtreme Gradient Boosting Regression (XGBR) to predict building 

flood damage from Hurricane Harvey by integrating insurance claims and geospatial data. The 

model achieved an R² of 0.74 and highlights the importance of water depth, building value, and 

height.  
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Chapter 1 
Leveraging Geosynchronous Satellite Imagery and 
Machine Learning to Predict Snow Water Equivalent at the 
NextGen Hydrofabric Scale 

Savalan Nasar Neisary1, Hassan Saleh2, Raymond J. Hess3, Helaleh Khoshkam4  

1 The University of Alabama; snaserneisary@crimson.ua.edu 

2 Western Michigan University; h.saleh@wmich.edu 

3 Rutgers University; raymond.hess@rutgers.edu 

4 University of Hawai'i at Mánoa; helaleh@hawaii.edu 

Academic Advisors: Steven J. Burian, The University of Alabama; Mohamed Sultan, Western Michigan 

University; Nathaniel A. Bogie, San José State University; Sayed M. Bateni, University of Hawai'i at Mánoa  

Summer Institute Theme Advisors: Jonathan Frame, University of Alabama, jmframe@ua.edu 

Abstract: Year to year, reliable estimates of snow water equivalent (SWE) are vital for 

freshwater management, as they govern the accuracy of annual streamflow predictions. Direct 

measurements of SWE are often restricted to point source locations, which neglect changes in 

terrain, and bring to the fore a need for broader spatial coverage. Our study aims to address 

this limitation by developing a deep learning (DL) model to assess the feasibility of predicting 

SWE at the NextGen hydrofabric catchment scale. We conducted a correlation analysis 

between the point-scale instrumented measurements of SWE and the visual and short-wave 

infrared (SWIR) imagery from the geostationary operational environmental satellites (GOES-

R) series at both the watershed and CONUS scales. We hypothesize that this relationship can 

be exploited through a data-driven modeling approach. To test this hypothesis, we trained two 

machine learning models, a convolutional neural network (CNN) and a long short-term 

memory (LSTM), with GOES-16 CONUS-scale satellite imagery (visual and infrared). In-situ 

measurements of SWE from three California Data Exchange Center (CDEC) stations were 

used for training, validating, and testing the model. We found a high positive and negative 

correlation between SWE and the radiance of visible and short-wave infrared bands, 

respectively. Moreover, the LSTM model predicted SWE with a Kling–Gupta Efficiency 

(KGE) of 0.63, compared to 0.52 from the CNN model. The findings from both correlation 

and machine learning provide a potential for improving SWE accuracy within the national water 

model and to benefit water resources management in snowpack driven streamflow systems. 

 

1. Motivation 

1.1 Water Resources & Mountainous Snowpack 

Cold high-elevation snowpack functions as a natural water tower, and in California, Sierra 

Nevada snowmelt supplies 30% of the state's freshwater resources annually [1, 2]. Year to year, 

demand for freshwater increases due to population growth, industrial expansion, and agricultural 

production. Snow water equivalent (SWE) is a metric representing the volume of liquid water 

contained within a volume of solid snow. A significant source of freshwater is runoff from 
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snowmelt; SWE and snowmelt rate affect how much and when snowmelt runoff occurs [3]. 

Accurate estimates of snow depth and SWE are essential for hydrological modeling and 

streamflow prediction. SWE is typically measured at ground stations, which are limited in 

distribution, resulting in discontinuous monitoring [4] and significant uncertainties [5]. To 

address this problem, we explored training a Machine Learning (ML) model with satellite imagery 

in the visible and infrared spectral bands from geostationary operational environmental satellites 

(GOES-R) to predict SWE in poorly monitored catchments. 

Currently, there is no observation-based, spatially complete, SWE product with high temporal 

resolution over large-scale regions. The daily SWE product from this study provides a unique 

opportunity to improve the accuracy of the SWE output from the National Water Model 

(NWM). 

1.2 Geostationary Environmental Satellites 

The National Oceanic and Atmospheric Administration (NOAA) currently employs four 

GOES-R, namely GOES-16 (East) and GOES-17 (West) (with one backup each). Although 

GOES-R series satellites need to be more utilized in hydrology, they are highly efficient. These 

orbiters provide continuous spatial coverage across the North American and South American 

continents, for near real-time (5-minute interval) environmental monitoring and weather 

forecasting. With the advanced baseline imager (ABI), instrumentation on board GOES yields 

pixel resolutions of 0.5 to 1.0 km for visible bands and 2 km for infrared channels. Comparing 

this spatial resolution with more conventional environmental satellites (MODIS and VIIRS), 

GOES series satellites produce coarser resolution imagery due to placement in geostationary 

orbit (35,800 km above Earth's surface). That said, the average lifespan of sensors aboard a 

GOES satellite is 15 years. This is nearly twice that of instrumentation on board conventional 

environmental satellites, MODIS and VIIRS, with 10-year and 7-year lifespans, respectively. 

These advantages suggest a promising upside and a significant cost-benefit to using GOES 

satellites for hydrologic research.  

2. Objectives and Scope  

The objectives of this study are to identify GOES bands that are correlated to SWE, and to 

assess the feasibility of assimilating GOES spectral bands (visual and infrared) to hydrofabric 

for a NextGen Water Model. To do this, we set out to develop a ML model that predicts SWE 

at the NextGen hydrofabric catchment-scale. Using GOES imagery as the primary training 

dataset, we propose the following questions to guide this study: Research Question 1, what are 

the benefits and limitations of using GOES for SWE modeling? Research Question 2, can we 

use GOES visual & infrared imagery to elicit NextGen hydrofabric catchment-scale dynamic 

hydrologic responses, specifically, which bands are correlated to SWE? Additionally, we propose 

the following hypotheses to test: Hypothesis 1, the GOES visible and infrared bands related to 

snow depth can be used to quantify SWE for short-term prediction and long-term monitoring 

of water resources in the southern Sierra Nevada. Hypothesis 2, GOES visible and infrared 

imagery provide a broad spatial context of SWE, enabling prediction for ungauged catchments 

in the Kern River watershed. 
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3. Previous Studies 

At present, employing satellite remote sensing to monitor snow dynamics is a commonly utilized 

approach [6]. Over the past thirty years, remotely sensed passive microwave (PM) data have 

delivered valuable SWE observations worldwide [7, 8]. Yet, applications of PM SWE data 

products are limited by many factors, such as the mixed pixel problem at coarse spatial 

resolutions (e.g., 25 km), the saturation of the PM signal over deep snow, the many-to-one 

relationships between the PM signal, snow grain size, and SWE, and the impacts of forest cover 

[9]. As a result, PM-based SWE products alone are unable to account for snow depth [9], 

particularly in mountainous areas. 

Snow exhibits a significant reflection in visible bands and a substantial absorption in the 

shortwave infrared spectra around 1.5 and 2.0 μm [3, 10]. Satellite observations in visible and 

infrared spectral channels provide useful information on fractional snow cover in various 

environments, which is correlated with snow depth. Many studies have tried to retrieve snow 

depth and SWE data using snow cover information from satellite imagery. Romanov & Tarpley 

(2004) evaluated the possibility of snow depth estimation over open prairie environments using 

an empirical relationship between snow depth and GOES-based fractional snow cover 

estimations. The results of this research reported a 30% error compared to ground stations for 

depths below 30 cm. Snow depth estimation is feasible since any alteration in snow depth 

impacts the fraction of the land surface covered by snow; consequently, this causes variation in 

the land surface’s visible reflectance [11]. The authors improved their retrieval algorithm to 

expand snow depth estimates to forested regions [12]. 

By comparing the SWE output of the NWM with the ground truth SWE data at snow telemetry 

(SNOTEL) sites throughout the western United States, Garousi-Nejad and Tarboton (2022) 

found that the NWM usually underestimates SWE. For example, the authors reported that the 

NWM shows snow melting 6 to 19 days earlier than observed by SNOTEL [13]. However, it is 

worth noting that SNOTEL stations can provide SWE measurements at several locations with 

limited measurement frequencies. Thus, they do not allow us to evaluate the NWM’s SWE 

product comprehensively. 

We developed a new approach to estimate SWE using GOES imagery. By using radiance signals 

from bands one and three as inputs and SWE measurements from three CDEC stations as 

outputs, we tested two ML models. To our knowledge, no study has directly estimated SWE 

from GOES data. We selected the Kern River watershed as our study site due to its high contrast 

of snow-covered and surface-exposed terrain and its southerly trend from high to low elevation.   

4. Data and Methodology 

4.1 Hydrologic Setting 

In California's southern Sierra Nevada mountains (36.578, -118.293), the Kern River is sourced 

by spring snowmelt from summits near Mount Whitney (the highest peak in the contiguous 

United States at 4,420 meters above sea level) (Figure 1). The Upper Kern River drainage basin 

encompasses 9,350 km2 of sloped terrain, with the primary channel reaching 120 km from the 

headwaters to its terminus at Lake Isabella (a dammed storage reservoir with a water holding 

capacity of 0.7 km3 or 570,000 acre-ft). Downstream, Kern County and the greater Bakersfield 

area depend on dam releases to source the Lower Kern River, which supplies local freshwater 
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demand. These releases are critical, as they 

provide irrigation water to 100,000 acres of 

fruits and vegetables throughout the region 

[14], generating an average annual 

economic value of 320 million dollars 

(USD). Snowpack in the Sierra Nevada 

remains a critical freshwater resource for 

California's expanding population and 

prolific agricultural economy.  

4.2 Ground Observations of SWE 

We downloaded daily measurements of 

SWE from the California Data Exchange 

Center (CDEC) for years 2021, 2022, and 

2023 at the following three sites: Upper 

Tyndall Creek (UTY), Casa Vieja Meadows 

(CSV), and Pascoes (PSC) (Figure 1; Table 

1). These stations provide a pillow sensor 

measurement of SWE, which utilizes a 

pressure transducer to weigh the overlying 

snow, whereby sheltered instruments then 

convert this weight into an electrical signal 

of SWE. Years 2021 and 2022 were 

particularly dry years in California, with 

peak SWE in the Kern River watershed 

averaging 28 and 31 cm, respectively 

(Figure 2). Alternatively, the year 2023 was a considerably wet year, with an average peak SWE 

of 170 cm. These order of magnitude differences highlight the importance of SWE prediction 

for accurate streamflow estimates. 

 

Figure 2. Peak SWE in the Kern River watershed at stations UTY, CSV, and PSC. Years 2021 and 2022 show 

relatively low snow conditions compared to the four-fold increase of SWE magnitude shown in the 2023 wet year. 

The streamflow values measured by the U.S. Geological Survey (USGS) versus SWE measured 

at three CDEC sites are depicted in Figure 3. According to Figures 2 and 3, the peak value of 

SWE leads to a significant increase in streamflow. Moreover, during the summer, when there is 

Figure 1. Inset topographic map of the Kern River 

watershed at the NextGen hydrofabric-scale showing two U. 

S. Geological Survey stream gauges (upstream and 

downstream) flanked by three CDEC stations: Upper 

Tyndall Creek (UTY), Casa Vieja Meadows (CSV), and 

Pascoes (PSC). 
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no snow on the mountain, the recorded streamflow is at its lowest range. This indicates that the 

downstream streamflow is highly correlated with the upstream SWE in the study basin. 

Table 1.  California Data Exchange Center stations in the Kern River watershed. 

Station ID Station Name Latitude Longitude Elevation (m) 

UTY Upper Tyndall Creek 36.65 -118.40 3,475 

CSV Casa Vieja Meadows 36.2 -118.27 2,530 

PSC Pascoes 35.97 -118.35 2,790 

 

 

Figure 3. Streamflow at two USGS gauges versus SWE at three CDEC sites (Gauge 1 is upstream and Gauge 2 is 

downstream). Streamflow is shown in blue on the left axis, and SWE is depicted in red on the right axis.  

4.3 GOES-16 Imagery 

Visible and infrared imagery from GOES-R series satellites were downloaded using the 

Goes2Go Python package (version 2024.7.0). In this study, we selected bands one, three, and 

five from the L1b product that represent blue, veggie, and short-wave infrared (SWIR), 

respectively. Radiance measurements for each band were extracted at 5-minute intervals and 

then stacked, without applying atmospheric corrections. The stacked cube was then resampled 

to a daily time step to match the temporal measurements of SWE data. Then, we performed a 

Pearson correlation analysis between pixel radiance and in situ SWE data to test Hypothesis 1. 

Finally, the data were processed and prepared as an input to the ML model. 

4.4 Pixel Correlation Analysis 

To explore relationships between SWE data and GOES spectral channels, we performed a pixel 

correlation analysis with imagery from bands one, three, and five and the time series of SWE on 

a daily time scale. Although a one-to-one correlation is not expected between radiance and SWE, 

we expect radiance to have an apparent response to snow depth and can be processed (through 
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dynamic modeling) to a corresponding value of SWE. We evaluated the Pearson Correlation 

between each band and SWE stations at the watershed and CONUS scales.  

4.5 Machine Learning Model 

In this study, we examined the performance of two Machine Learning (ML) models, including a 

Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM), to predict 

SWE values using the Radiance of GOES imagery.  

An image or other grid-like data can be processed using a ML technique called a CNN algorithm. 

It consists of fully connected layers for prediction, pooling layers to lower dimensionality, and 

convolutional layers that use filters to identify features. CNNs are useful for applications like 

object identification and picture recognition because they automatically learn the spatial 

hierarchies of information [15]. 

Recurrent neural networks (RNNs) with LSTM are intended to simulate temporal data and 

sequences. LSTM utilizes gates to regulate the information flow to solve the vanishing gradient 

problem. The input, forget, and output gates enable the network to store or discard data over 

extended periods. For sequential data applications, such as time-series forecasting, LSTMs work 

incredibly well [16]. 

Radiance data of GOES bands one and three were initially selected as  inputs to the ML models, 

while the SWE time series from each CDEC station were the model outputs. Due to limited 

storage capacity, we used data from the years 2022 and 2023 for training and testing purposes, 

respectively. The values of the hyperparameters that were set for each developed model are 

reported in Table S1. 

4.6 Performance Evaluation Metrics 

To test the model's performance, we selected the Kling–Gupta Efficiency (KGE) metric to 

evaluate the linear correlation, the mean ratio, and the ratio of standard deviations between the 

modeled SWE data and the observed SWE data [17]. Additionally, we used Percent Bias (PBias) 

to evaluate the over- or underestimation of the predictions, and Root Mean Square Error 

(RMSE) to assess the prediction error.  

5. Results & Discussion 

Our goal was to determine whether we can extract useful information from CONUS and 

watershed-scale GOES imagery, which has high temporal but moderate spatial resolution, for 

SWE prediction. We employed a pixel correlation analysis and tested two ML models to achieve 

this goal. Correlation analysis provides a preliminary understanding of how different bands may 

represent SWE magnitude at various locations. It also highlights which regions in CONUS and 

the watershed are more connected with SWE. This information is critical for developing and 

interpreting the results of our ML models in the subsequent steps. 

5.1 Watershed Pixel Correlation Analysis 

For watershed-scale analysis, we first extracted the pixels within our study basin, and then used 

a Pearson correlation to analyze the relationship between each band and CDEC station for 2023. 

The correlation maps in Figure 4 show that bands one and three have a high positive correlation 

at sites PSC (Figures 4a and b), CSV (Figures 4d and e), and UTY (Figures 4g and h). In contrast, 
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band five has a high negative correlation (Figures 4c, f, and i), particularly in high-elevation 

regions with significant snow cover. Snow absorbs the wavelengths of band five and intensifies 

the reflection of bands one and three, which results in these strong correlations. Furthermore, 

correlation results demonstrate that GOES imagery at the catchment-scale contains information 

that can help accurately predict SWE, without additional dynamic- and static-data.

Figure 4. Watershed-scale pixel correlation analysis between CDEC stations and GOES radiance for bands 1, 3, 
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and 5. Subplots (a), (b), and (c) show correlations with station PSC for bands 1, 3, and 5, respectively. Subplots (d), 

(e), and (f) show correlations with station CSV, while (g), (h), and (i) show correlations with station UTY. 

5.2 CONUS Pixel Correlation Analysis 

One of our primary goals is to evaluate whether CONUS-scale GOES imagery can be used to 

extract information related to micro and macro atmospheric phenomena for SWE prediction at 

targeted locations. Thus, we performed a pixel correlation analysis between SWE values at three 

different high-elevation stations and the radiance of bands one, three, and five. 

Figure 5 shows high positive and negative correlations for band one and stations PSC, CSV, and 

UTY, indicating that certain phenomena across CONUS influence SWE values at the catchment 

scale. To better visualize the correlation, we removed cells with correlation values between -0.4 

and 0.4, highlighting positive correlations in red and negative correlations in blue (Figure 6). 

Comparing results across stations reveals spatial trends in correlated regions, suggesting that 

these phenomena impact various elevations differently. 

 

Figure 6. CONUS-scale correlation analysis from left to right for stations CSV, PSC, and UTY, respectively, and 

GOES band one for pixels with values less than -0.4 and greater than 0.4.  

Figure 6 shows three regions of distinct high correlation for band one and for band three (Figure 

S1). The region with the highest correlation is the western United States, specifically the Rocky 

Mountains and the Cascade Range, which have significant snow cover. Correlations in this 

location show opposite values for different bands due to the varying response of different 

wavelengths to snow. The second high-correlation region is the Gulf of Mexico, attributed to 

Figure 5. CONUS-scale correlation analysis from left to right for CSV, PSC, and UTY stations, respectively, and GOES 

band one. 
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moisture movement caused by atmospheric rivers and tropical systems, affecting snowfall and 

moisture in the Sierra Nevada Mountains [2]. The third region is the Sierra Madre Occidental 

Mountains along the west coast of Mexico, which are influenced by seasonal changes in 

vegetation and soil moisture. These findings support our hypothesis that GOES imagery can 

reveal hydrologic processes and atmospheric phenomena that influence SWE magnitude across 

CONUS, which ML models can leverage for prediction. A detailed analysis of the physical 

processes connecting areas of high correlation in GOES imagery to SWE at our study sites could 

offer insights into atmospheric dynamics and large-scale hydrological processes.  

5.3. LSTM and CNN Predictions 

We developed two DL models, including CNN and LSTM, to predict SWE at the watershed 

scale using GOES bands one and three as inputs. We present the results of the UTY station here 

and the results for other stations in the supplementary materials section. For the LSTM model, 

we extracted the cells with a correlation higher than 0.5, then smoothed the radiance time series 

of these cells using a 15-day moving average. The LSTM model architecture has three layers, 

including an LSTM, a dropout, and linear layers with Mean Square Error (MSE) as the loss 

function. We fed the data with a 20-day look back at the model and used a dry year (2022) for 

training and a wet year (2023) for testing. Figure 7-A shows the time series of the observed and 

predicted SWE, and Figure 7-B shows the 1:1 scatter plot of the train results. In Figures 7-C and 

7-D, we show the test results, and in Table 2, we summarize the evaluation values of KGE, 

RMSE, and PBias of the train and test results. Results show a 0.63 KGE for test duration, 

indicating great alignment of prediction and observation data considering the limitation of data 

and computational power for model training and testing. 

 

(A) 

 

(B) 

(C) 
 

(D) 
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Figure 7. Shows the results of LSTM for A and B training period (2022) and C and D for the testing period (2023) 

for the UTY station. In B and D, the dashed line shows the 1:1 relationship between the observed and predicted 

values.  

For the CNN model, we used all the cells as inputs and let the model analyze the dataset. Here, 

we used a 5-day moving average to smooth the dataset. Our tuning process showed that a longer 

moving average decreases the model performance in the CNN model. We used CNN, max pool, 

and linear layers in our architecture, with MSE as our loss function. Figure 8 presents the time 

series and scatter plot of the CNN model, which shows high training accuracy and reasonable 

testing accuracy. Table 2 provides values for the different metrics, which show more than 0.5 

KGE for the model. 

Table 2. Presents the metric values for both the train and test periods of both models for the UTY station. CNN 

shows lower accuracy compared to the LSTM. 

Eval. Metric LSTM (train) CNN (train) LSTM (test) CNN (test) 

KGE 0.91 0.94 0.63 0.65 

RMSE 0.53 0.5 12.8 14.2 

PBias 0.93 6.3 -3.35 -2.32 

 
(A) 

 
(B) 

 

(C) 

 

(D) 

Figure 8. Results of the CNN for A and B training period (2022) and C and D for the testing period (2023) for the 

UTY station. In B and D, the dashed line shows the 1:1 relationship between the observed and predicted values.  
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6. Conclusion 

Our study extracts a relationship between radiance from GOES spectral channels and SWE 

magnitude, at both the watershed and continental scales. We have estimated a high positive 

correlation between daily radiance from visible bands and observed SWE over areas covered by 

snow within the Kern River watershed. Similarly, a high negative correlation was found between 

band five (short-wave infrared) and SWE. To build on that, we trained two ML models, LSTM 

and CNN, to predict SWE from radiance. Model results indicate good performance (KGE: 0.63 

and 0.65) for the LSTM and CNN models, respectively. The model results could be further 

improved by training the model with more bands (i.e. bands 2 and 5) and incorporating other 

hydroclimatic and static layers as inputs for the ML models. This relationship can be exploited 

and incorporated into the basic model interface for a NextGen National Water Model. Future 

efforts will derive these relationships from international geostationary satellites and similar snow 

telemetry networks abroad. 

Acknowledgments 

We thank Fred Ogden and Dan Lindsey for project guidance and helpful suggestions, Andrew 

Bennett for conversations regarding model architecture, and James Halgren for technical 

support. 

Supplementary Materials 

GitHub Repository: https://github.com/NWC-CUAHSI-Summer-Institute/SI24_GOES-SWE 

Table S1. Optimal hyperparameters of LSTM and CNN models. 

 Model Hyperparameter  LSTM CNN 

Batch Size 10 10 

Learning Rate 0.01 0.001 

Number of Epochs 200 50 

Weight Decay 1e-3 1e-9 

Lookback 20 - 

Dropout 0.7 - 

 

 

 

 

https://github.com/NWC-CUAHSI-Summer-Institute/SI24_GOES-SWE
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1. CONUS scale correlation results.  

 

Figure S1. CONUS-scale correlation analysis from left to right for CSV, PSC, and UTY stations, respectively, and 

GOES band three. 

 

Figure S2. CONUS-scale correlation analysis from left to right for CSV, PSC, and UTY stations, respectively, and 

GOES band three for pixels with values less than -0.4 and greater than 0.4. We provide this plot to visualize the 

correlations better.  

2. Model Results 

2.1. PSC station results. 

 
(A) 

 
(B) 

 
(C) 

 
(D) 
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Figure S3. Shows the results of LSTM for A and B training period (2022) and C and D for the testing period (2023) 

for the PSC station. In B and D, the dashed line shows the 1:1 relationship between the observed and predicted 

values.  

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure S4. Shows the results of CNN for A and B training period (2022) and C and D for the testing period (2023) 

for the PSC station. In B and D, the dashed line shows the 1:1 relationship between the observed and predicted 

values.  

2.2. CSV station results. 

(A) 
 

(B) 

 
(C) 

 
(D) 
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Figure S5. Shows the results of CNN for A and B training period (2022) and C and D for the testing period (2023) 

for the CSV station. In B and D, the dashed line shows the 1:1 relationship between the observed and predicted 

values.  

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure S6. Shows the results of CNN for A and B training period (2022) and C and D for the testing period (2023) 

for the CSV station. In B and D, the dashed line shows the 1:1 relationship between the observed and predicted 

values.  
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Abstract: Atmospheric Rivers (ARs) are extreme weather events characterized by intense 

moisture transport, which, upon landfall, produce precipitation that can either alleviate drought 

or cause significant flooding and socio-economic damage. The study focuses on ARs along the 

Pacific West Coast of North America, from Washington to California, due to their diverse 

climatic conditions and significant agricultural and economic activities. Identifying ARs using 

GOES imagery with high temporal and spatial resolution is crucial for timely and accurate 

prediction, as it provides continuous and detailed observations essential for monitoring these 

events. In this project, GOES-R series satellites and ERA5 reanalysis data were utilized to 

analyze the identification of ARs. A U-Net CNN was employed for AR detection, trained on 

labeled AR data, and validated against benchmark datasets. Additionally, a Random Forest (RF) 

model was used as a secondary approach for AR identification. The CNN outperformed the 

RF model across most metrics, achieving an Intersection over Union (IoU) of 0.23, while the 

RF model achieved IoU of 0.02. Training a robust U-Net CNN model with real-time 

monitoring GOES satellite imagery and hand-labeled data proved effective in identifying ARs 

with high accuracy. 

1. Motivation 

An atmospheric river (AR) is a long, narrow, and transient corridor of strong horizontal water 

vapor transport, typically associated with a low-level jet (LLJ) stream ahead of the cold front of 

an extratropical cyclone [1]. These ARs are significant conveyors between oceanic evaporation 

and continental precipitation, often responsible for 90% of poleward moisture transport [2]. For 

example, in the North Pacific, they transport an average of 700 kg m−1 s−1, which is more than 

twice and 25 times the mean annual discharge of the Amazon and Mississippi rivers, respectively 

[1], [3]. ARs can cause heavy precipitation when forced upward by mountains or within warm 

conveyor belts, contributing 20-30% of annual precipitation in western Europe and USA [3]. 

While crucial for water supplies, ARs are also responsible for over 85% of flood events along 

the U.S. West Coast. Their absence can increase drought occurrence by up to 90% [3], [4].  

mailto:anshulya@tamu.edu
mailto:jkandasa@gmu.com
mailto:m.melesse@wsu.edu
mailto:surabhi_upadhyay@mines.edu
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Identifying ARs is critical for water resource management, especially as climate change predicts 

larger and more intense ARs [4]. Historically, AR identification has depended on algorithms and 

human skills. Still, recent advancements have shown the potential of deep learning, particularly 

convolutional neural networks (CNNs), to efficiently identify ARs in large satellite images [5]. 

CNNs have been applied to AR identification and segmentation using climate reanalysis datasets 

(i.e., ERA5, HR-CESM, MERRA-2.0, LR-CMIP6) on both global and regional scales, showing 

promising results in improving detection accuracy [6], [7], [8]. However, these reanalysis-based 

methods face challenges due to uncertainties in initial conditions, numerical approximations, and 

model deficiencies, leading to decreased forecast skill over time [9]. To address these limitations, 

identifying ARs directly from optical sensor weather satellites like Geostationary Operational 

Environmental Satellite (GOES) presents an unexplored opportunity for more immediate, 

observationally based AR analysis. 

GOES provides high-frequency (5-minute resolution for some of its products), near-real-time 

observations with extensive spatial coverage, which is crucial for the timely detection of 

atmospheric phenomena. On the other hand, ERA5, a widely used reanalysis dataset, offers 

detailed and comprehensive atmospheric information, though with some latency [10]. By 

utilizing direct observation and the near-real-time capabilities of raw GOES images for AR 

identification and using the detailed data from ERA5 for comparison, we hope to improve the 

identification and analysis of ARs. It should also be noted that when a method that utilizes 

adaptive timestep is applied, the fine temporal resolution of GOES can be highly useful, 

especially when AR is about to make landfall that is unparalleled by other resources.  

2. Objectives and Scope  

The primary objective of this project is to explore the potential of GOES satellite data in 

accurately identifying ARs along the Pacific coast of North America. We developed and tested 

two machine learning models—a U-Net model and a random forest model—to identify ARs 

from GOES satellite imagery spanning the period from 2018 to 2020. The U-Net model is 

utilized for its capabilities in image segmentation, while the random forest model is leveraged 

for its robust classification abilities. The research questions guiding this investigation include:  

● Can optical satellite data from GOES, with its unique spatio-temporal resolution, be 

effectively utilized for the detection of ARs? Can this potential be extended to real-time 

monitoring capabilities?  

● How accurately can U-Net and random forest models identify atmospheric rivers from 

GOES satellite imagery? Which of the two models performs best regarding accuracy, 

precision, recall, and other relevant metrics for AR identification?  

By addressing these questions, the project aims to enhance the understanding of using satellite 

data for AR identification and contribute valuable insights into developing reliable and accurate 

AR detection systems. 

3. Previous Studies 

There has been an increase in interest in ARs in recent years [11] about addressing diverse issues 

of climatology and hydrology. At the basis of most studies is the detection of ARs [12], [13], 

[14], [15], [16]. Earlier and recent studies used threshold-based algorithms as a main tool for AR 
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detection. For instance, Osorio et al. [17] utilized integrations of the NASA Goddard Institute 

for Space Studies global climate model ModelE version 2.1 (GISSE2.1) for assessing the impact 

of climate change on ARs on the South Pacific Ocean and found that ARs respond differently 

at different latitudes of the basin. Guan and Waliser [18] applied the Tracking Atmospheric 

Rivers Globally as Elongated Targets (tARget) algorithm on ERA5 to develop a global ARs 

database to handle ARs in tropical and polar areas better. Others [18], [19], [20], [21], [22] also 

used different threshold-based algorithms for the identification of ARs. 

In contrast to threshold-based algorithms, there has been an increased use of deep learning 

techniques for identification and tracking of ARs in recent times. This has been mostly due to 

two related challenges: inconsistent results by an algorithm on varying datasets and inconsistency 

on a given dataset across different algorithms [23]. One such work using deep learning is by 

Higgins et al. [24], who utilized CNN adapted from CGNet using a climate dataset which resulted 

in the successful identification of ARs as compared to the threshold-based algorithms. Mahesh 

et al. [23], using existing Atmospheric River Tracking Method Intercomparison Project 

(ARTMIP) data, also utilized CNN for the identification of ARs successfully 1. Other studies 

[23], [27], [28] have also explored deep learning for AR identification and tracking. 

Compared to other studies utilizing deep learning on AR, our study will fill two gaps. The first 

is the usage of direct observations from continuous GOES satellite data, which has unparalleled 

temporal resolution. The second is raw satellite data, which has not been utilized for AR 

identification based on reviewed studies. 

4. Methodology 

4.1 Study Area 

Our research focuses on the Pacific West Coast of North America, as illustrated in Figures 1 

(a) and 1 (b). The study area encompasses a broad region from the state of Washington in the 

north to California in the south, extending westward over the Pacific Ocean. This region is 

significantly impacted by atmospheric rivers (ARs), which contribute approximately 50% of the 

water supply [29]. Historical data indicates that from 1950 to 2010, ARs played a crucial role in 

alleviating drought conditions in the Pacific Northwest, ending three out of four droughts during 

this period [29]. More recently, in 2022, ARs were instrumental in mitigating California's 

prolonged drought, demonstrating their importance in sustaining water resources in this area 

[30]. 

Additionally, this research considers the broader impacts of ARs on neighboring countries, 

including Canada and Mexico. British Columbia in Canada and the Baja California Peninsula in 

Mexico also experience significant weather events influenced by ARs [31]. These regions, like 

the western United States, benefit from the water resources provided by ARs, which are crucial 

for their water supply and drought mitigation efforts. The GOES satellite imagery used in this 

 
1 ARTMIP is established to assess uncertainties in AR science based on detection/tracking methodology 

and works that analyze Ars based on the MERRA-2 reanalysis data set [25]. It utilizes five categories when 
assessing studies on ARs; computation type, geometry requirements, threshold requirements, temporal 
requirements, and regions [26]. All the categories of ARTMIP are utilized in either the identification stage of 

our work or in the tracking and prediction part of our work. 
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research provides a comprehensive view of the atmospheric conditions over this entire region, 

allowing for detailed analysis and monitoring of ARs. 

 

Figure 1: Study Area and GOES Satellite Imagery. (a) Pacific West Coast region including the US, Canada, and 

Mexico. (b) GOES satellite image capturing atmospheric conditions over the study area (false color composite using 

bands 2,3,1). 

4.2 Dataset 

The datasets used in the research, and the time period and spatial and temporal resolutions, can 

be found in Table 1.  

Table 1: Dataset used in the research 

Dataset Period Temporal 

Resolution 

Spatial 

Resolution 

Reference 

GOES Imagery 2018 to 2020 15-min 4 km [32] 

Labeled AR 1979 to 2022 Event-based & 

6-hour time step 

 [33] 

ERA5 1996 to 2022 Hourly 31 km at 137 

pressure levels 

Dataset available at: 

https://climate.copernicus.eu

/climate-reanalysis 

4.2.1 GOES Satellite Imagery  

The GOES series is operated by the National Oceanic and Atmospheric Administration 

(NOAA) of the United States. This study utilizes data from the GOES-R series, specifically 

employing the Advanced Baseline Imager (ABI) with 16 channels, offering a spatial resolution 

of 2 km for most channels and a temporal resolution of 15 minutes for full disk scans [34]. Data 

retrieval for the GOES-17 and GOES-18 satellites is facilitated by the GOES-2-go Python 

package (Version 2022.07.15), which accesses data through Amazon Web Services (AWS) as part 

of NOAA's Open Data Dissemination Program [32]. More information regarding the bands in 

GOES pre-2016 and post-2016 can be found in the supplementary material - section S1. The 

raw data from the GOES satellites required conversion into a standardized projection format. 

This step involved transforming the native GOES projection [32] into a rectilinear latitude-

longitude projection to ensure consistency with the analysis requirements and facilitate accurate 

https://climate.copernicus.eu/climate-reanalysis
https://climate.copernicus.eu/climate-reanalysis
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spatial referencing. Additionally, the GOES images were resized from their original resolution 

of 4500x4996 pixels to 512x512 pixels to facilitate machine learning training and improve 

computational efficiency. 

4.2.2. Labeled AR data 

The dataset consists of continuous labeled data from 1979 to 2022, recorded at 6-hour intervals. 

This extensive temporal coverage provides a comprehensive view of the AR events. The data 

was sourced from Rhoades [33], who utilized the advanced TempestExtremes v2.1 algorithm to 

detect these features [35]. This algorithm is known for its robust capability in identifying and 

characterizing AR events, ensuring high-quality and reliable data for research and analysis. 

4.2.3. ERA5 climate reanalysis product 

The retrieved data from ERA5 include wind components (u, v) and specific humidity (q) at 

multiple pressure levels (300 hPa to 1000 hPa). These data were used to calculate Integrated 

Water Vapor (IWV) and Integrated Vapor Transport (IVT) (refer to equations in supplementary 

material - section S2 equations 1-2). IWV represents the total column of water vapor by 

integrating specific humidity over the pressure levels, while IVT quantifies the horizontal 

transport of water vapor using specific humidity and wind components across these levels [36]. 

We utilized ERA-5 reanalysis data to calculate IVT and IWV and developed a thresholding 

algorithm to identify AR objects. This algorithm applies specific thresholds for IVT and IWV 

and evaluates the minimum length and width of potential AR regions to meet typical AR criteria. 

The algorithm starts by applying threshold values for IVT and IWV to create an initial mask of 

potential AR regions. Regions meeting these thresholds are marked. Minimum length and width 

requirements for ARs are converted from kilometers to grid points, ensuring precise 

identification of contiguous AR regions. Each connected region in the initial mask is labeled and 

evaluated against these criteria, resulting in a robust final binary mask representing AR regions. 

This mask is used for further analysis and benchmarking, providing a reliable method for 

identifying ARs in the ERA-5 reanalysis dataset. 

4.3 Models  

4.3.1 CNN architecture 

The U-Net CNN architecture used in this study comprises two main components: the encoder 

and the decoder, each tailored to handle different aspects of the segmentation task [37]. The 

encoder extracts meaningful features from the input images through a series of convolutional 

layers, capturing spatial hierarchies and reducing dimensionality. The decoder is responsible for 

reconstructing the segmented images from the encoded features. It performs the upsampling 

process, which involves a series of deconvolutional layers that gradually restore the spatial 

resolution of the data to its original form. The detailed U-Net CNN architecture used in this 

study can be seen in Figure 2. The input images of size 512x512 are passed through the encoder, 

which consists of convolutional layers with ReLU activation and max pooling layers to reduce 

dimensionality. The bottleneck layer captures the most abstract features before passing them to 

the decoder. The decoder uses bilinear upsampling and convolutional layers to gradually restore 

the original resolution, culminating in a final 1x1 convolution layer to produce the segmented 

output. 
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Figure 2: U-Net CNN Architecture. The model features an encoder that reduces dimensionality through 

convolutional and max-pooling layers, and a decoder that reconstructs the image using up sampling and 

convolutional layers to restore the original resolution. 

The learning rate for our U-Net model was initialized to 0.0001 and dynamically reduced if 

accuracy metrics plateaued, ensuring a balanced speed of convergence and stability during the 

training process. A batch size of 16 was selected to manage memory usage efficiently while 

maintaining stable training dynamics. We employed the Adam optimizer for its adaptive learning 

rate capabilities, which assist in effectively navigating the loss landscape. The Dice coefficient 

was used as the primary metric for monitoring model performance. The loss function combined 

Binary Cross-Entropy (BCE) and Focal Cross-Entropy. The Focal Binary Cross-Entropy loss 

function was specifically designed to address the class imbalance, as most pixels in our dataset 

belonged to the non-AR class. This function down-weights the loss for well-classified examples 

and focuses the model's learning on harder, misclassified examples by applying a modulating 

factor to the cross-entropy loss. This approach ensures that the model pays more attention to 

the minority class, improving overall accuracy in AR detection. The combined loss function 

sums the standard binary cross-entropy loss with the focal loss, enhancing the model's ability to 

handle class imbalance effectively. 

Training was conducted for 20 epochs, which provided sufficient time for the model to converge 
while minimizing the risk of overfitting. The training process was executed on a GPU-equipped 
high-performance computing (HPC) system to accelerate computations. The dataset was divided 
into training and validation sets to evaluate the model's performance, with 80% of the data 
allocated for training and 20% for testing because 80-20 split strikes a balance between having 
enough data to train the model and having enough data to validate its performance [37].  

4.3.2 Random Forest (RF) Architecture 

RF is a versatile classification algorithm that operates by constructing an ensemble of decision 

trees. Each decision tree in the random forest is trained on a random subset of the features and 

examples from the dataset, introducing variability and reducing overfitting. In RF, the 

classification process involves each decision tree making its prediction, and the final classification 

is determined by aggregating the predictions from all the trees. In our study, RF was used as a 

secondary approach for identifying ARs because of its straightforward training process and the 
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relatively short time required to train on the entire dataset. We trained the RF model with all 

1420 samples with 100 decision trees (around 7 hours). We used 80% of the data for training 

and 20% for testing. 

4.4. Evaluation metrics 

The approach was evaluated by comparing it to labeled masks. Performance evaluation was 

conducted using six metrics: precision (to assess the proportion of correctly identified AR pixels 

among those predicted), recall (to measure the proportion of actual AR pixels that were correctly 

identified), F1 score (to balance precision and recall), intersection over union (IoU, to quantify 

the overlap between predicted and true AR regions), accuracy (to determine the overall 

correctness of predictions), and Dice coefficient (to measure the similarity between predicted 

and true AR masks, with detailed formulas provided in equations 3-7 of the Supplementary 

materials). Each metric ranges from 0 to 1, with 0 indicating the worst possible performance and 

1 indicating the best possible performance.  

5. Results 

5.1 ERA-5 Benchmark Dataset 

The results from the algorithm that we developed (details in section 4.2.3) are promising, 

accurately identifying AR regions by applying specific IVT and IWV thresholds. The conversion 

of geometrical criteria from kilometers to grid points ensures precise detection of contiguous 

AR regions. The final binary mask, representing AR regions, is robust and reliable for further 

analysis and benchmarking in the ERA-5 reanalysis dataset. The algorithm's effectiveness, 

showing the IVT, IWV, and resulting AR mask for December 13, 1997, at 12:00 UTC can be 

seen in Figure 3.  

Figure 3: Atmospheric River Identification for December 13, 1997, at 12:00 UTC. (a) Integrated Vapor Transport 

(IVT), (b) Integrated Water Vapor (IWV), and (c) AR mask indicating identified atmospheric rivers. 

The figure illustrates accurate AR region identification, validating the algorithm's ability to 

differentiate between AR and non-AR areas. This method enhances our understanding of AR 

events and improves AR detection accuracy in historical climate data. 

5.2 Image Segmentation using RF 

The RF model was trained using the configurations discussed in section 4.3.1 tailored to optimize 

performance in segmenting AR events. The AR event snapshots can be seen in Figure 4, where 

Figure 4(a) shows the RF model prediction using the full dataset, Figure 4(b) showing the 

labeled dataset that we used as ground truth as a target variable and Figure 4(c) as evaluating 



National Water Center Summer Institute 2024   

29 

both of their performance using a confusion matrix. The average precision was 0.3448, the F1-

score was 0.113, and the IoU was 0.02, demonstrating significant improvements in precision and 

overlap between predicted and actual AR regions.  

 

Figure 4: Random Forest (RF) model predictions compared with labeled data and evaluation results. The top row 

shows (a) RF model prediction, (b) labeled data, and (c) evaluation of the model which has an IoU of 0.34 and an 

accuracy of 0.94.  

A low Dice coefficient in segmentation tasks suggests poor spatial overlap between predicted 

and ground truth masks. This can happen if the model fails to capture the correct boundaries or 

details of the segmented objects, leading to mismatches with the ground truth. If the model is 

too simplistic (underfitting), it may not capture the complexities of the data, resulting in poor 

performance across all metrics, including the F1 score and Dice coefficient. Low-quality data, 

noise, or artifacts (such as speckles in radar or SAR images) can adversely affect segmentation 

and classification tasks, leading to lower F1 scores and Dice coefficients.  

5.3 Image Segmentation using CNN  

The performance of the CNN model for image segmentation is illustrated in Figure 5. This 

figure compares the GOES imagery, ground truth, and model output for specific times and 

locations. The key metrics for evaluating the model's performance include the Intersection over 

Union (IoU) and accuracy. The original GOES imagery, which captures the atmospheric 

conditions over the Pacific West Coast using bands 8, 9, and 10 in the RGB composite can be 

seen in Figure 5(a). These bands highlight lower brightness temperatures associated with water 

vapor, often appearing as black filament-like structures in the raw data, which correspond to 

ARs. The ground truth data, depicted in Figure 5(b), highlights the actual locations of ARs 

based on manually annotated or benchmark data. The output of the model predicting the AR 

presence probability across the region can be seen in Figure 5(c). 

 

Figure 5: AR identification using our U-Net model trained on GOES imagery, showing (a) brightness temperature 

from the water vapor bands (Bands 8-10) as a False Color Composite showing complex cloud patterns and 

atmospheric features, (b) The labeled dataset provided for training, highlighting the atmospheric river region in 

white, and (c) the prediction made by the U-Net model, indicating the probability of an atmospheric river (AR), 

where lighter shades represent higher probabilities. 
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The model achieved an Intersection over Union (IoU) of 0.23 over the entire dataset, indicating 

the overlap between the predicted AR regions and the ground truth. Additionally, the model 

demonstrated a high accuracy of 0.92, reflecting the proportion of correctly identified pixels in 

the segmentation task. The CNN model shows robust performance in identifying the geometry 

associated with AR systems, accurately capturing the elongated and filamentous nature of these 

structures. However, the IoU is low, partly due to the nature of the ground truth, which 

comprises smooth objects. The clouds that are part of the AR system often have irregular and 

non-smooth boundaries, as predicted by our model, leading to a decreased IoU. Further 

improved performance could be achieved by training the model for more than 20 epochs, 

allowing it to better learn the complex patterns associated with ARs. 

Despite the model's robustness, there are instances where it fails. For example, the input dataset 

sometimes contains corrupted images with striped artifacts, as shown in Figure S1-3 in the 

supplementary information. These artifacts degrade the model's performance by providing 

inaccurate data during training and inference. Additionally, discrepancies between the ground 

truth mask and the actual AR locations can also lead to a loss in accuracy. This misalignment is 

evident in Figure S3, where the ground truth does not perfectly match the AR structures apparent 

in the raw GOES imagery. While the CNN model demonstrates strong potential for real-time 

AR detection and monitoring, addressing these challenges and refining the training process can 

further enhance its precision and reliability. 

5.4 Evaluation Metrics 

The evaluation metrics assessed our overall model performance from different and 

complementary angles, as seen in Figure 6. While the accuracy shows a high performance for 

both models, that is not reflected by the rest of the metrics equivalently. Our precision and recall 

indicate a large number of false positives and false negatives, respectively, in both models. Our 

F1 score, IoU, and Dice coefficient values further reflect this.  Nevertheless, the metrics indicate 

better performance by CNN showing its superiority over the RF mode. This shows the CNN 

model’s potential for the identification of ARs using GOES satellite data with further 

improvement, as discussed in section 5.3.  

 

Figure 6: Density plots of evaluation metrics (Precision, Recall, F1 Score, IoU, Accuracy, and Dice Coefficient) 

for U-Net and RF. These plots illustrate the performance distribution of each model across the different metrics. 
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6. Conclusion 

ARs are important climate phenomena in global moisture transport and regional precipitation, 

with dual roles of mitigating droughts and causing floods. This study demonstrates the potential 

of using GOES imagery combined with machine learning techniques to identify ARs along the 

Pacific coast of North America. By leveraging the high temporal resolution of GOES satellite 

data, our U-Net CNN and random forest models provided valuable insights into AR detection 

and segmentation. The U-Net CNN model exhibited robust performance, achieving high 

accuracy in segmenting ARs and demonstrating the feasibility of using satellite imagery for real-

time AR detection. Despite some challenges in capturing precise boundaries and details of ARs, 

the model's ability to identify the general structure of ARs is promising for operational 

monitoring. Although not on a par with the CNN model, the random forest model showcased 

the utility of simpler classification methods as well. 

While this project has made significant strides in leveraging GOES satellite data for AR 

identification, several areas remain for future exploration. Further research could focus on 

improving the preprocessing techniques for satellite imagery to enhance model accuracy, 

especially removing striping in the input imagery. Additionally, incorporating more advanced 

machine learning models, such as deep learning architectures beyond U-Net, may improve AR 

detection performance. Extending the temporal analysis beyond 2022 and including more 

comprehensive climatic data could offer deeper insights into AR patterns and long-term trends. 

Moreover, real-time implementation and operational testing of these models in practical settings 

will be essential to evaluate their robustness and reliability in dynamic environments. The 

potential for GOES satellite data in atmospheric river detection can further be reinforced by 

exploring these future research directions. 
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Supplementary Materials 

Code and data links for this research are available at: https://github.com/NWC-CUAHSI-

Summer-Institute/SI24_GOES-ARs  

S1: About GOES imagery 

GOES 16 to 18 (GOES-R Series): https://www.noaa.gov/jetstream/satellites/goes-west-goes-

17 

● Visible bands: Channel 1 and 2 are Blue and Red bands - this is the highest resolution 

band coming from GOES 16 

● Near-infrared bands: Channel 3 (Veggie band), 4 (Cirrus band), 5 (Snow/Ice band), 6 

(Cloud particle size), and 7 (Shortwave window) 

https://github.com/NWC-CUAHSI-Summer-Institute/SI24_GOES-ARs
https://github.com/NWC-CUAHSI-Summer-Institute/SI24_GOES-ARs
https://www.noaa.gov/jetstream/satellites/goes-west-goes-17
https://www.noaa.gov/jetstream/satellites/goes-west-goes-17
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● Water Vapor bands: Channel 8 (Upper-level Water Vapor band), 9 (Mid-level Water 

Vapor band), 10 (Lower-level Water Vapor band). 

● Infrared bands: Channel 11 (Cloud-top phase), 12 (Ozone band), 13 (Clean infrared 

band), 14 (Traditional Infrared band), 15 (The Dirty Infrared band), 16 (Carbon Dioxide 

band), and True Color 

S2: Calculation of IWV and IVT 

𝐼𝑊𝑉 =
1

𝑔
∫ ⬚

300 ℎ𝑃𝑎

1000 ℎ𝑃𝑎

𝑞 ∙ 𝑑𝑝 
(1) 

𝐼𝑉𝑇 =
1

𝑔
√(∫ ⬚

300 ℎ𝑃𝑎

1000 ℎ𝑃𝑎

𝑞 ∙ 𝑢 𝑑𝑝)

2

+ (∫ ⬚
300 ℎ𝑃𝑎

1000 ℎ𝑃𝑎

𝑞 ∙ 𝑣 𝑑𝑝)

2

 

(2) 

 

where 𝑔 is the acceleration due to gravity, wind components (u, v) and specific humidity (q) at 

multiple pressure levels (300 hPa to 1000 hPa). 

S2: Evaluation Metrics 

𝑇𝑃, 𝑇𝑁, 𝐹𝑃 𝑎𝑛𝑑 𝐹𝑁 are true positive, true negative, false positive, and false negative 

respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                       (3) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                            (4) 

 𝐹1 𝑆𝑐𝑜𝑟𝑒      = 2 𝑋
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
                                             (5) 

 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                        (6) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁
                                                         (7) 

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡  =
2 ∙  𝑇𝑃

2 ∙ 𝑇𝑃 +  𝐹𝑃 + 𝐹𝑁
                                                  (8) 
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S3: CNN architecture & Image segmentation using CNN  

 

Figure S1: Example of corrupted input data with striping artifacts. (a) GOES imagery showing artifacts, (b) ground 

truth AR locations, and (c) model output predictions. The presence of artifacts negatively impacts the model's 

performance, resulting in an IoU of 0.00 despite a high accuracy of 0.95. 

 

Figure S2: Even slight striping effects cause a considerable decrease in accuracy. (a) GOES imagery showing 

artifacts, (b) ground truth AR locations, and (c) model output predictions. The presence of artifacts negatively 

impacts the model's performance, resulting in an IoU of 0.00 despite a high accuracy of 0.97. 

 

Figure S3: Comparison of (a) GOES imagery, (b) ground truth AR locations, and (c) model output predictions. 

This figure highlights discrepancies due to misalignment between ground truth and actual AR structures, leading to 

an IoU of 0.03 and an ccuracy of 0.96. 
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Abstract: Accurate streamflow prediction is influenced by uncertainties in initial conditions, 

forcing data, model structure, and parameters. It is crucial for water supply management, flood 

control, and various environmental applications. The accuracy of these predictions is influenced 

by multiple sources of uncertainty, including initial conditions, forcing data, model structure, 

and parameters. This study aims to quantify the uncertainty of forcing inputs to probabilistically 

predict streamflow within gauged catchments. Utilizing the NextGen Framework and the 

Catchment Attributes and Meteorology for Large-sample Studies (CAMELS) basin dataset, we 

implemented the Dynamically Dimensioned Search (DDS) calibration method for the 

Conceptual Functional Equivalent (CFE) Model. By identifying appropriate perturbation 

factors and ensemble sizes in the training dataset, we enhanced the reliability of streamflow 

predictions. The results were compared against USGS streamflow data, that is a reliable source 

of accurate data, demonstrating improved prediction accuracy in gauged basins.       

 

1. Motivation 

The primary motivation of this study is the lack of streamflow probabilistic analysis by the Next 

Generation Water Resources Modeling (NextGen) Framework. To do this, we propose a 

probabilistic approach using the NextGen Framework to quantify the uncertainty in forcing data 

for the streamflow predictions across three CAMEL selected basins. By leveraging this 

framework, we aim to enhance the accuracy and reliability of streamflow predictions, ultimately 

contributing to improved water resource management and decision-making processes. 

Additionally, this study seeks to further our understanding of the NextGen Framework as a 

model-agnostic tool in the context of hydrological modeling. By employing NextGen, we aim to 

demonstrate its versatility and robustness in handling various hydrological models, thereby 

broadening its applicability and utility in the field. 

To this end, the CFE Model with the Basic Model Interface (BMI) was utilized for this project 

analysis. The integration of CFE-BMI within the NextGen Framework allows handling model 

inputs and outputs to be dealt with facilitating a comprehensive evaluation of the framework’s 

performance in streamflow prediction [1]. This approach promises to yield valuable insights into 

the capabilities of NextGen while advancing the state of the art in hydrological modeling and 

uncertainty quantification. The study will also contribute to the broader scientific community by 

showcasing the benefits of a model-agnostic framework, promoting collaboration and 

about:blank
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interoperability among researchers. Additionally, it will enable evidence-driven model selection 

[2]. 

2. Objectives and Scope  

2.1.  Assess CFE Model Performance with NextGen 

 The CFE model is used in the NextGen framework to assess its performance in three CAMEL-

selected basins. This implementation will leverage resources from the CFE repository [A1], 

which is accessible. The goal is to utilize the NextGen Framework's model-agnostic capabilities 

to integrate and evaluate the CFE model, ensuring comprehensive performance analysis in 

diverse hydrological conditions. 

2.2. Model Calibration Using Ngen-cal 

Calibrate and validate the NextGen model for the selected catchments using the ngen-cal tool 

[A2]. The calibration will involve adjusting model parameters to align simulated streamflow with 

observed data, followed by rigorous validation to ensure the model's accuracy and robustness. 

This step is critical for fine-tuning the model to accurately reflect real-world hydrological 

dynamics. 

2.3 Uncertainty Quantification 

Quantify the uncertainties associated with forcing files to enhance the reliability of streamflow 

predictions. This involves systematically analyzing the variability in input data, such as 

precipitation and temperature, and their impact on model outputs. By identifying and 

characterizing these uncertainties, we aim to improve the model’s predictive capabilities and 

provide more reliable streamflow forecasts. 

2.4 Probabilistic Prediction 

Another objective of this project is to develop probabilistic predictions of streamflow based on 

the quantified uncertainties. This approach involves generating a range of possible streamflow 

scenarios, rather than a single deterministic forecast, to better capture the inherent variability 

and uncertainty in hydrological processes. Probabilistic predictions will support more informed 

water resource management and decision-making by providing potential outcomes and their 

associated probabilities. 

3. Previous Studies 

In previous studies, the National Water Center's CFE model, which is a simplified hydrological 

model, has been applied to estimate the volume of water flowing into rivers and streams 

following rain events [3-4]. This model has demonstrated effectiveness in capturing the essential 

dynamics of rainfall-runoff processes. Additionally, the NextGen Framework has been used for 

data assimilation, integrating real-time observations with model simulations to enhance the 

accuracy of hydrological forecasts [5]. Wolkeba et al. [6] also conducted data assimilation of 

USGS streamflow using CFE model. Our research aims to build on these studies by quantifying 

the uncertainty in streamflow predictions within the CAMELS basins, utilizing the strengths of 

both the CFE model and the NextGen Framework to improve prediction reliability.  
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4. Methodology 

4.1. Study area 

For this project, three CAMELS basins located in the northwest of Sacramento, California, were 

selected based on the findings by Bolotin et al. [7] and are shown in Figure 1. Their study 

indicated that the Normalized Nash-Sutcliffe Efficiency Error (NNSE) showed                satisfying 

performance in these basins, with values close to one indicating better performance. According 

to that study, we chose three basins with promising NNSE values.  

 

Figure 1. Location of the three selected CAMELS basins northwest of Sacramento, California. 

Detailed information about these basins, including their physiographic characteristics, is 

provided in Table 1. 

Table1. Physiographic characteristics of basins 

Gauge ID 

(CAMEL ID) 

Mean elevation 

(m) 

Mean Slope 

(m/km) 

 

Area (km2) 

Average 

precipitation 

(mm) 

Average 

Temperature ( ̊C) 

11480390 1049.64 76.61899 242.6 1327.07 10.2 

11528700 1019.07 107.622 1980.08 1106.92 10.5 

11473900 1037.85 126.7067 1925.01 1232.26 11.3 

4.2. Hydrofabric for Next Generation Water Resource Modeling 

The NextGen hydrofabric artifacts are distributed by NHDPlusV2 Vector Processing Units. 

These artifacts are generated from national reference datasets developed in collaboration 

between the USGS and NOAA for federal water modeling efforts. Designed for easy updates, 

manipulation, and quality control, they aim to meet diverse modeling needs while utilizing the 

best possible input data. Moreover, to better understand the hydrological characteristics of the 
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basins, hydrofabric outputs [8-9] of these basins are provided in Figure 2. In this figure, NextGen 

hydrofabric provides information on divides, flowlines, and nexuses. 

   

Figure 2. Hydrofabric output of the three selected basin 

4.2. Data Preparation 

Forcing data is used from North American Land Data Assimilation System (NLDAS-2) and also 

for Potential Evapotranspiration (PET) data used from Gauch et al. [10] research. NLDAS-2 

dataset encompasses various meteorological elements, including shortwave and longwave 

radiation, specific humidity, air temperature, surface pressure, near-surface wind (u and v 

components), and precipitation. The NLDAS-2 datasets are notable for their fine spatial 

resolution of approximately 12.5 km and an hourly temporal resolution, extending from January 

1979 to the present day. The project period, selected from 2008 to 2012, utilized hourly data. 

Additionally, USGS streamflow data is employed for the analysis. Additionally, a comparison 

between the National Water Model (NWM) and USGS streamflow observations for three 

selected basins is provided in the supplementary materials (Figures 3-5) to demonstrate its 

performance.  

4.3. NextGen Framework 

The NextGen Framework is a groundbreaking initiative undertaken by the NOAA National 

Weather Service (NWS), Office of Water Prediction (OWP) [11]. Launched in 2019, NextGen 

represents a significant evolution in hydrological modeling, aiming to enhance the predictive 

capabilities of the U.S. National Water Model. This refactoring effort integrates two critical 

standards: the Community Surface Dynamics Modeling System (CSDMS) Basic Model Interface 

(BMI) version 2.0 for model coupling and the Open Geospatial Consortium's WaterML version 

2.0, part 3, Hydrologic Features (HY_Features) conceptual data model. These standards ensure 

a high level of interoperability and data consistency across diverse modeling systems. 

Since early 2020, the NextGen prototype has been actively developed by NOAA/OWP staff 

and contractors, including ERT and Lynker. In September 2023, a contract was awarded to 

Raytheon to develop the NextGen Framework further, Improved Flood Inundation Mapping 

(FIM), and Enhanced Hydrofabric, which is provided on GitHub [A3]. Collectively, these 

advancements are known as the Next Generation Water Prediction System Capability 

(NGWPC). The NGWPC aims to operationalize Version 4 of the National Water Model and 

USGS- 11473900 USGS- 11480390 USGS- 115287003 



National Water Center Summer Institute 2024   

41 

enhance flood inundation mapping, thereby improving the nation's ability to predict and respond 

to water-related hazards. 

The development of NextGen is characterized by its collaborative and standards-based approach 

[10], ensuring compatibility between the various iterations created by different stakeholders, 

including NOAA/OWP, Raytheon, and the Cooperative Institute for Research to Operations 

in Hydrology (CIROH). NextGen's development and governance emphasize a high level of 

technological readiness and operational value, with a structured pathway for transitioning 

research advancements into operational capabilities. Regular interactions and updates among 

CIROH, NOAA/OWP, and Raytheon ensure that the standards for model coupling, and data 

modeling are consistently applied, facilitating the smooth integration of new technologies and 

methodologies. 

Overall, NextGen represents a significant advancement in water resources modeling, leveraging 

cutting-edge technologies and collaborative efforts to enhance the predictive accuracy and 

operational capabilities of water prediction systems in the United States [12-13]. 

4.3. Dynamic Dimensioned Search (DDS) 

Dynamic Dimensioned Search (DDS) [14-16] is an advanced global optimization algorithm 

suited for complex systems' calibration problems. It builds upon the foundational principles of 

the Direct Dimensioned Search (DDS) method but introduces additional strategies to handle 

high-dimensional search spaces more efficiently.  

4.4 Analyzing Hydrological Processes Using the CFE Model  

The CFE model is a conceptual adaptation of the original NWM, comprising seventeen 

parameters [11]. For those interested in a more detailed exploration of the CFE model, the 

GitHub repository [A4] provides comprehensive information, including source code, 

documentation, and examples.  

5. Results 

For this project, our group’s GitHub repository (https://github.com/NWC-CUAHSI-Summer-

Institute/NextGen-Uncertainty-quantification/tree/main) stands out as a significant 

achievement. The main goal of this repository is to ensure the reproducibility of our processes 

for future CUAHSI Summer Institute fellows, thereby accelerating their progress. While it is not 

a tutorial, it meticulously documents all the issues and challenges we faced during the project, 

providing valuable insights and easing future participants' paths. 

5.1. CFE-Py Calibrated Model 

The CFE model was calibrated for the USGS 11480390-gauge basin, which, due to its similar 

regional climate and proximity to the other two basins in the study area (see Table 1), is 

considered representative for this project. The calibration period spans from 2008 to the end of 

2009, the validation period is from 2010 to 2011, and the testing period is from 2011 to 2012. 

Results of the calibration and testing phase are provided in Figure 6 and Figure 7. Also, a 

calibrated model is implemented for 2012-01 to 2012-12 as the testing period (Figure 7).   

https://github.com/NWC-CUAHSI-Summer-Institute/NextGen-Uncertainty-quantification/tree/main
https://github.com/NWC-CUAHSI-Summer-Institute/NextGen-Uncertainty-quantification/tree/main


National Water Center Summer Institute 2024   

42 

 

Figure 6. CFE calibrated model result and USGS observations of the selected basin 

 

Figure 7. CFE test result and USGS observations of the selected basin (NNSE = 0.63) 

5.2 Hyperparameter Tuning for Uncertainty Quantification 

5.2.1 Hyperparameter Tuning 
In this study, we performed hyperparameter tuning to find the optimal perturbation factor and 
ensemble size. This was based on the score of the probabilistic performance metric, such as the 
Normalized Root Mean Square Error Ratio (NRR), in the validation dataset. This tuning process 
helps to understand the appropriate perturbation factor and ensemble size to quantify the forcing 
uncertainty. This process involved testing various combinations of those hyperparameters, 
calibrating the model and then calculating NRR in the validation dataset. The range of 
perturbation factors was between 5-25% and 10-100 for ensemble size. This tuning process helps 
to understand the appropriate perturbation factor and ensemble size to quantify the forcing 
uncertainty. 

5.2.1 Uncertainty Quantification 

The uncertainty quantification of forcing data used a perturbation-based method. This approach 

involves varying the input forcing data by specific percentages and ensemble size and analyzing 

the predictive interval in the validation dataset based on probabilistic performance metrics. The 

perturbation process was implemented by creating ensembles of forcing datasets, with ensemble 

sizes ranging from 10 to 100 with different perturbation factors. The resulting predictive 
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intervals for streamflow predictions were then analyzed to assess the uncertainty. Therefore, this 

method provides the uncertainty quantification of forcing data.  The predictive interval for the 

test period is shown in Figure 8, while the event-based predictive interval is depicted in Figure 

10. To enhance the clarity of these predictions, precipitation rates are included in Figures 9 and 

11. Additionally, the predictive intervals for the simulated streamflow using the CFE model are 

matched against the USGS streamflow data in general. 

 

Figure 8. CFE model test and predictive interval for a one-year time period (test) for gauge-11480390 

Figure 9. Precipitation over the 11480390 CAMEL basin during test period (one year) 

 

 

NRR=1.36 
NNSE=0.63 
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Figure 10. CFE model test and predictive interval for two events 

 

Figure 11. Precipitation over the 11480390 CAMEL basin during two events 

6. Conclusion   

We quantified the uncertainty of the forcing data (PET and precipitation) for the studied basin. 

We determined that the optimal perturbation factor is 0.15 and the ensemble size is 25. The 

results indicated that the predictive interval is reliable during peak events. However, the 

probabilistic performance metric (NRR) score of 1.36 suggests that the predictive interval is too 

narrow. This highlights the need to consider additional sources of uncertainty, such as 

parameters, model structure, initial conditions, and calibration parameters. For future studies, 

the use of various hydrologic models and the inclusion of different sources of uncertainty could 

help generate a wider predictive interval, closer to an NRR of 1. 
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Figure 3. NWM result and USGS observations of the basin ID-11473900 
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Figure 4. NWM result and USGS observations of the basin ID-11480390 

 

 

Figure 5. NWM result and USGS observations of the basin ID-111528700 
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Abstract: Flood mapping is essential for effective disaster management, requiring rapid and 

accurate delineation of flood extents. This study explores a hybrid approach combining remote 

sensing data and terrain-based models to generate accurate flood inundation maps. Remote 

sensing, especially using satellite imagery, provides data for large spatial extents but faces 

challenges like cloud and canopy cover. Terrain-based models, such as FLDPLN (pronounced 

floodplain) and Height Above Nearest Drainage (HAND), provide flood inundation mapping 

by leveraging information from Digital Elevation Models (DEM) and water surface elevation 

to predict flood inundation extent and depth. This research integrated remote sensing imagery 

with a terrain-based model to enhance flood mapping accuracy and efficiency. A remote sensing 

analysis procedure product was developed using Google Earth Engine to extract flood edge 

pixels from satellite imagery. The edge pixels were then used to estimate stream flood stage 

which serves as input to the FLDPLN model to estimate water depth and generate flood 

inundation maps. The proposed methodology (FLDSensing) was applied over the Verdigris 

River to map a flood event experienced in late May 2019. FLDSensing results show an accurate 

match of flood inundation map extension compared to a HEC-RAS 2D benchmark with 

performance metrics of (CSI, F-1 Score, PBIAS) and vertical deviations between (-1m - +2.5m) 

along the hydraulic profile. Integrating remote sensing data with the FLDPLN model addresses 

issues using remote sensing imagery, providing a comprehensive flood mapping solution. 

 

1. Motivation 

Rapid and accurate methods to delineate flood extent are crucial for decision-makers to provide 

effective measures to preserve human lives and identify areas prone to infrastructural damage. 

Using satellite imagery for flood mapping is widespread for this purpose, considering that it 

provides a valuable tool for accessing large scale and near-real-time information with high spatial 

and temporal resolutions [1], [2]. However, satellites are often not positioned over the area of 

interest at the right time, have a high cost (for commercial platforms), and do not capture the 

depth of the water, which often makes their use difficult in practical terms. Other challenges 

when using remotely sensed satellite imagery, especially in optical imagery, are the presence of 

clouds or canopy cover, which makes it difficult to identify the full extent of flooding. Synthetic 

mailto:j375e293@ku.edu
mailto:fjgomez1@crimson.ua.edu
mailto:pgw5jd@virginia.edu
mailto:lixi@ku.edu
mailto:sagy.cohen@ua.edu
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Aperture Radar (SAR) imagery is a useful tool in flood mapping, especially when dealing with 

atmospheric interference [3]. However, part of the drawbacks of SAR-based flood mapping is 

that it can be negatively affected by water-like and smooth surfaces, image speckling, dense 

vegetation, and urban development [4]. 

Flood inundation maps can also be obtained through models that seek to represent conceptually 

or numerically the extent and depth of water during a flood event. For example, 2D models, 

such as HEC-RAS 2D, allow the use of governing equations to simulate a flood hydrograph and 

identify potentially affected areas. While numerical models provide detailed representations of 

flow properties, they are computationally intensive. These models require equipment capable of 

handling large computational volumes to optimize simulation times, particularly for large 

domains or areas needing special detail [5]. Conceptual models like HAND and FLDPLN aim 

to provide a simplified representation of flood mapping for river segments. These models 

consider terrain and flow direction characteristics and are designed to be computationally 

efficient. However, they sacrifice accuracy because they cannot fully capture some hydraulic and 

hydrodynamic processes in the floodplain [6], [7]. 

The combination of remote sensing flood inundation maps and terrain-based model tools to 

determine the extent and depth of flood can be useful in complementing details that both lack 

effectiveness. For remote sensing, post-processing of imagery using terrain-based models can fill 

gaps inside the flooded domain in areas obstructed by clouds or canopies, increasing the extent 

accuracy and allows the estimation of water depths. Utilizing a near-real-time FLDPLN terrain-

based model we can derive a synthetic stage value from remote sensing imagery as soon as they 

are available. This could improve model performance alongside improving remote sensing-based 

FIM, especially in areas where the stage is unknown, or the discharge-to-stage method is 

unreliable. This project will focus on improving remote sensing flood inundation mapping using 

the FLDPLN model.  

2. Objectives and Scope  

This study aims to develop a remote sensing image analysis procedure product in tandem with 

terrain-based models to generate accurate flood inundation maps from satellite imagery. The 

operational tools to replicate and apply the study’s framework to other study areas (e.g., flood 

edge extraction app, remote sensing - FLDPLN integration framework) are also prepared for 

operational purposes. The project objectives include: 

1. Develop a methodology for extracting flood edge pixels that includes detecting 

uncertainties due to land cover, cloud coverage, and terrain features from optical images 

during flood events. 

2. Generation of a tool for delineating flood edge pixels using Google Earth Engine given 

user-defined parameters. 

3. Estimation of the depth of flow at some flood source pixels along the stream from the 

flood edge pixels using the FSP-FPP inundation relationship of the FLDPLN model. 

4. Develop a script that generates flood inundation maps by integrating remote sensing and 

FLDPLN and validates them against the ground truth, given the availability of data. 
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3. Previous Studies 

At the operational level within the United States, the Office of Water Prediction (OWP) 

developed a Flood Inundation Mapping (FIM) forecasting framework based on HAND 

approach (referred to as the OWP HAND-FIM). The OWP HAND-FIM methodology is 

effective and quick in generating flood inundation map results and with a certain level of 

confidence considering its limitations and assumptions [7]. This method has been widely applied 

over multiple sets of domains to test the capabilities considering a variety of terrain features and 

drainage configurations [8], [9]. Terrain-based models like OWP HAND-FIM can generate 

results over large domains at a fraction of the time and computational resources that 2D 

hydrodynamic models consume, making these not feasible for operational CONUS-scale 

applications [7]. Similar to the OWP HAND-FIM, other terrain-based models have been 

developed, like AutoRoute [10], FLDPLN [6], GeoFlood [11], and more, with modifications of 

the methodology or other assumptions to capture flow patterns and estimate flood extent and 

depths. 

The FLDPLN model was chosen for this study because of its ability to capture more complex 

flood inundation relationships, such as backfill and spillover processes [6]. More importantly, 

the FLDPLN model assigns each point within a floodplain a flood source pixel (FSP). The FSP 

is a stream pixel from where floodwaters originate that can inundate a floodplain pixel (FPP) at 

the shallowest depth to flood (DTF). FPP can be flooded from FSP through backfill and 

spillover processes noted above, and the model identifies the FPP-FSP flooding relationships 

and their associated DTF. This allows for interpolated depth of flood (DOF) values between 

gauged locations (i.e., stage) to create a custom flood extent map with depth during specific flood 

events [12].  

This study builds off of similar research combining a remotely sensed image with the FLDPLN 

model to get an improved flood extent map [12]. That study utilized the flood edge pixels derived 

from an HEC-RAS 2D model output as synthetic gauge input for the FLDPLN model. The 

study found that combining a limited number of flood edge points with the FLDPLN model 

yielded promising accuracy. However, the accuracy had an upper limit, which varied based on 

the quantity of flood edge pixels available. The study also suggested utilizing land cover data to 

eliminate forested areas, which provided the basis for this project.  

Compared to the proof-of-concept in [12], this study uses a remotely sensed flood inundation 

map as a source of the flood edge and HEC-RAS 2D model output as the benchmark for 

validation. Additionally, the assignment of stages at the river pixels (flood source pixel) is 

performed with a more rigorous algorithm instead of taking the mean of possible choices.  

4. Methodology 

The proposed methodology has two main steps: extracting flood edge pixels from remote 

sensing and generating flood inundation maps derived from FLDPLN. The following sections 

describe the study area, the steps for generating remote sensing plus FLDPLN flood inundation 

maps, and validation. 
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4.1 Study Area 

The study area is located in southeast Kansas, over the watershed of the Verdigris River (Figure 

1). In May 2019, a series of severe thunderstorms hit southeastern Kansas, which caused 

substantial flooding in the region, affecting cities such as Independence and Coffeyville, which 

sit along the Verdigris River. The study area river is a tributary of the Arkansas River and runs 

from central Kansas into Oklahoma. There are two USGS gauges in the study area, one in 

Independence Kansas (Station ID: 07070500, Latitude: 37.22, Longitude: -95.67) and one in 

Coffeyville Kansas (Station ID: 07170990, Latitude: 37.005, Longitude: -95.59), that provide a 

continuous record of gauge height. These gauges will be used later in HEC-RAS model 

calibration.  

 

Figure 1. Study area location. 

4.2 Derive Clean Flood Boundary Points  

A clean flood edge pixel is a pixel that is the boundary of a flood, or a pixel that does not fall 

underneath clouds or border aerial-view-obscuring land cover such as trees. If a pixel falls 

underneath a cloud cover or borders an aerial-view-obscuring land cover, it is classified as an 

unclean edge or an edge pixel with low confidence on being a clean edge pixel. This “unclean” 

edge pixel likely has flood extent continuing underneath the land cover. If we select an unclean 

edge then an incorrect water surface elevation will be derived which will affect the FLDPLN-

predicted FIM and depth map, so care is needed to determine accurate, clean edge pixels.  

We developed a Google Earth Engine (GEE) application where the user can define the study 

area location and date to derive flood extent maps from Sentinel-2 imagery and select flood edge 

pixels with high confidence. User-defined values include study date, area of interest, and masking 

threshold values (Normalized Difference Water Index (NDWI), Normalized Difference 

Vegetation Index (NDVI), cloud masking, slope thresholding, small water body masking, and 
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landcover masking). The script can be accessed in the supplementary materials section of the 

report.  

In this study, we applied a land cover mask for urban, forest, permanent water bodies, and 

cultivated crop pixels because these pixels contain more uncertainties for remote sensing based 

FIM (e.g., canopy interception may lead to underestimation of the full extent of flooding). We 

also applied a 1-pixel buffer around the masks and removed pixels with a slope value below 2.5 

degrees and above 9.5 degrees.  

4.3 Integration of Remote Sensing Flood Inundation Maps into FLDPLN 

 

Figure 2. FLDPLN scheme in a range box, and proposed methodology in the blue box 

FLDPLN uses observed stages from USGS or the National Water Model (NWM) results to 

assign and interpolate the stage (i.e., water level) of FSP locations along the study area. The stages 

are then compared to the associated depth to flood (DTF) between FSPs and clean edge pixels 

(FPP), and a pixel is considered to be flooded if any stage of associated FSPs is higher than the 

DTF relationship between them. This study assigns water levels at FSPs are assigned using the 

clean flood edge pixels’ DTF relationship. At the clean flood edge (i.e., the boundary between 

water and non-water pixel), the flood depth is ideally 0. The flood depth at the flooded pixel is 

calculated as the difference between the associated stage and DTF relationship. Therefore, the 

stage of the FSPs can be assigned to equal to the DTF value between the FSPs and clean flood 

edge pixels (Figure 2).  
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Figure 3. Example of FSPs’ DOF assignment using clean edge pixel FPP methodology 

We assigned the FSPs’ stages based on clean edge pixels’ DTF relationship by iterating through 

all possible combinations of stage assignment and selecting the choice that results in the flooding 

with the lowest sum of flood depth (i.e., flood depth simulation closest to 0) at all of the clean 

edge pixels. Figure 3 illustrates an example of how the FSPs’ stages are assigned for the scenario 

where there are two FSPs and two associated clean flood edge pixels. Compared to assigning the 

mean value of all possible DTFs to each FSP [12], optimizing the assignment of the FSPs stage 

through all possible combinations requires longer computational power and time but can ensure 

that all clean flood edges are flooded. For example, with the same clean edge map with 122 clean 

edge pixels, taking the median DTFs leaves 22 edge pixels unflooded. 

Because FLDPLN stores all possible flooding pathways via DTF relationships, some flood edge 

pixels at the outermost layer of the flooded domain can contain very high DTF values (i.e., the 

pixel is only flooded at extreme flood events). While clean flood edges are carefully selected by 

applying various masks, including land cover, slope, and cloud probability conditions, flood edge 

pixels with unreasonably high DTF may still remain and result in unreasonably high FSP stage 

assignment. To avoid overestimating FSP stages, we applied a threshold that removes flood 

edges with any DTF relationship higher than 14 meters. The threshold was chosen based on 

USGS stage information during the flood event (the maximum recorded stage was ~ 12.5 

meters) and the fact that FLDPLN libraries were generated with the maximum flood depth of 

15 meters. It is uncertain that this threshold can be applied in all cases. Additionally, we only 

used assigned FSPs on the mainstems for interpolation for the remaining FSPs as FSPs in the 

tributaries (FLDPLN stream order > 1) lead to overestimation of stages on the mainstems. For 

the FIM of tributaries catchment, the process should run separately.  

4.4 Ground Truthing  

To verify the results from the proposed methodology, a HEC-RAS 2D (HR2D) model (version 

6.5) was generated using Shallow Water Equations ELM for governing equations. The model is 

delimited between Independence and Coffeyville cities, which allows it to be constrained with 

United States Geological Survey (USGS) data of hydrograph and water surface elevation 

boundary conditions, respectively. Manning roughness coefficients were assigned based on the 
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National Land Cover Dataset (NLCD) 2019 land cover data and reclassified into 5 categories 

(Table S1 in supplementary material).  

4.5 Evaluation Metrics 

For flood extent evaluation, we used the Critical Success Index (CSI) and F-1 score to compare 

against the HEC-RAS benchmark results. CSI, also known as the Threat Score, measures the 

accuracy of the model's positive predictions. On the other hand, the F-1 score is the harmonic 

mean of precision and recall, providing a balance between the two. The F-1 score is extremely 

useful when dealing with an imbalanced dataset (e.g., there are usually more non-water than 

water pixels). The two metrics are calculated using a confusion matrix of true positives (TP) (i.e., 

the model correctly labels water/flooded pixel), true negatives (TN) (i.e., the model correctly 

labels non-flooded pixel), false positive (FP) (i.e., model incorrectly label a dry pixel as flooded), 

and false negative (FP) (i.e., model misses a flooded pixel). For flood depth evaluation, we used 

PBIAS to quantify the average tendency of predicted values to differ from observed values (flood 

depth in this case), expressed as a percentage, with positive values indicating overestimation and 

negative values indicating underestimation. A table of equations used can be found in the 

supplementary material section as Figure S1.  

5. Results       

5.1 Remote Sensing Clean Flood Edges 

Sentinel 2 optical imagery of the study area, captured on May 27th (Fig. 4a), shows the flood 

extent close to the peak discharge of the event with relatively few clouds. The shown Sentinel 2 

image is used as an input into the FLDPLN model. For flood edge pixel extraction, the 

methodology discussed in Section 4.2 was applied. The Sentinel 2 image processing yielded a 

total of 227 clean edge pixels for the study area. These pixels are then reprojected to the same 

coordinate system used by FLDPLN (UTM 14N) and identified as FPP through a Python 

subroutine. Figure 4b shows the initial FIM from Sentinel 2 image after NDWI reclassification, 

and the third image shows flood edge pixels extracted using the GEE application. 
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Figure 4. (a) Sentinel-2 image over the study area. Captured on 05/27/2019; (b) Flood extent map derived from 

Sentinel-2 image using NDWI threshold; (c) and examples of how masking out different land cover will affect the 

amount of clean edge pixels. 

5.2 Remote sensing - FLDPLN combination FIM 

Figure 5 shows Sentinel-2 and FLDSensing FIM predictions compared to the HEC-RAS 2D 

benchmark. Due to cloud and canopy interception, there are multiple gaps within the flooded 

domain of Sentinel-2 FIM (Figure 5a). Using FLDSensing methodology, the flood extent 

gaps/underestimations were filled in using terrain information and the DTF relationship 

between FSP and clean flood edge. However, simply using all clean flood edges led to a 

substantial overestimation of flood extent (Figure 5b). With the exclusion of flood edges with 

maximum DTFs > 14 meters and tributaries FSPs assignment (Section 4.3), FLDSensing result 

achieved much better flood extent than using solely remote sensing (Sentinel-2), improving CSI 

and F-1 score from 0.59 to 0.80 and from 0.74 to 0.89, respectively. The high-performance 

metrics underscore the effectiveness of this methodology and validate the accuracy of combining 

remote sensing flood edge with FLDPLN model in representing flood extents. However, it is 

important to note that upper and lower regions are categorized as false positives, these 

discrepancies are due to the HR2D domain definition using USGS gauges, which does not match 

exactly with the comparison area. Despite these False Positives, the overall high CSI and F1 

scores indicate that the model and methodology used are highly effective for the majority of the 

analyzed segment. 
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Figure 5. Performance of flood extent from Sentinel-2 (a) and FLDSensing with (c) and without (b) 

thresholding compared to HEC-RAS 2D benchmark.  

5.3 Flood Depth Comparison 

Figure 6 shows the flood depth differences of FLDPLN generic run (using USGS gauges) (Fig 

6a) and FLDSensing (Fig 6b) versus HEC-RAS benchmark results. For both FLDPLN and 

FLDSensing, flood depths were overestimated compared to the benchmark, especially in the 

northern region of Coffeyville city. Additionally, discrepancies in the river channels (i.e., 

misalignment in the river profile) between FLDPLN and HEC-RAS could be observed at the 

high flood depth difference running across the floodplain. The decrease in PBIAS from base 

FLDPLN to FLDSensing (i.e., FLDSensing simulates lower flood depth) could be due to the 

fact that FLDPLN was run with the maximum stages obtained from USGS on May 29th. On 

the other hand, FLDSensing relied on Sentinel-2 imagery, which might not have been captured 

at the absolute peak of the flood on that day. As both FLDPLN and FLDSensing were 

overestimating the flood depth, it is highly possible that the uncertainties and assumptions in the 

interpolation of FSPs’ stage across all segments were the main culprit for the high flood depth.  

The hydraulic profile shows longitudinal dynamics in water surface elevation along the river main 

channel (Figure 6c). The HR2D (green) and FLDSensing (blue) results were extracted along 56 

kilometers between Coffeyville and Independence. The results show that the developed 

methodology overestimates water surface elevation by up to 2.5 meters in some sectors. The 

values are consistent with the spatial results presented in Figure 5, where the areas with 

overestimates are identified. 
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Figure 6. Flood depth difference compared to HEC-RAS benchmark of (a) FLDPLN using USGS gauges 

(b) FLDSensing result (c) and Hydraulic profile comparison between FLDPLN results against HR2D 

benchmark. 

6. Conclusion 

The coupling of remote sensing and terrain-based models improves the prediction/extraction 

of the extent and depth of floodwater. The FLDSensing tool approximates the extent and depth 

map from pixels at the edge of the flood captured by the satellite image. These pixels, together 

with the pre-calculated relationships between the FLDPLN model’s FSP and FPP, determine 

the levels of the water layer reached at the stream and flood total extension. 

The application of the methodology proposed in the Verdigris River flooding in 2019, shows 

that it is feasible to greatly improve a remote sensing generated flood map using the FLDSensing 

approach. The performance metrics indicate satisfactory results, with both the CSI and F1 score 

exceeding 0.8 for the analyzed segment. This demonstrates the effectiveness and reliability of 

the model in the specific context studied in order to capture a general flood extent and also 

providing water depths along the study area. The methodology presented exhibits an 

overestimation on flooding the extent and depth of water in some specific areas. This occurs 

mainly due to the incorporation of misclassified pixels as a clean edge. Part of the proposed 

future work includes detailed research on the categorization and number of pixels to be 

incorporated. Including a way to automatically mask out pixels with an unrealistic DTF value for 
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the study area. Future work could include the testing of different model DOF interpolation 

methods along FSPs and river segments to enhance model accuracy. 
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Figure S2. Comparing RS FIM and FLDPLN Gauge and NWM Results with our benchmark HEC-RAS model 

output.  

Table S1. Manning roughness coefficients assigned by land cover. 

Land cover Manning roughness 

coefficient 

Open water 0.035 

Developed areas 0.018 

Barren land 0.04 

Forests/Wetlands 0.1 

Cultivated crops 0.05 

References 

[1]       N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google 

Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sens. Environ., vol. 

202, pp. 18–27, Dec. 2017, doi: 10.1016/j.rse.2017.06.031. 

[2]       E. Hamidi, B. G. Peter, D. F. Munoz, H. Moftakhari, and H. Moradkhani, “Fast Flood 

Extent Monitoring With SAR Change Detection Using Google Earth Engine,” IEEE Trans. 

Geosci. Remote Sens., vol. 61, pp. 1–19, 2023, doi: 10.1109/TGRS.2023.3240097. 

[3]       X. Shen, D. Wang, K. Mao, E. Anagnostou, and Y. Hong, “Inundation Extent Mapping 

by Synthetic Aperture Radar: A Review,” Remote Sens., vol. 11, no. 7, p. 879, Apr. 2019, doi: 

10.3390/rs11070879. 



National Water Center Summer Institute 2024   

60 

[4]       A. Betterle and P. Salamon, “Water depth estimate and flood extent enhancement for 

satellite-based inundation maps,” Feb. 06, 2024. doi: 10.5194/nhess-2024-22. 

[5]       P. D. Bates, “Flood Inundation Prediction,” Annu. Rev. Fluid Mech., vol. 54, no. 1, pp. 

287–315, Jan. 2022, doi: 10.1146/annurev-fluid-030121-113138. 

[6]       J. Kastens, “Some New Developments on Two Separate Topics: Statistical Cross 

Validation and Floodplain Mapping,” University of Kansas, 2008. 

[7]       F. Aristizabal et al., “Extending Height Above Nearest Drainage to Model Multiple 

Fluvial Sources in Flood Inundation Mapping Applications for the U.S. National Water 

Model,” Water Resour. Res., vol. 59, no. 5, p. e2022WR032039, May 2023, doi: 

10.1029/2022WR032039. 

[8]       A. D. Nobre et al., “Height Above the Nearest Drainage – a hydrologically relevant new 

terrain model,” J. Hydrol., vol. 404, no. 1–2, pp. 13–29, Jun. 2011, doi: 

10.1016/j.jhydrol.2011.03.051. 

[9]       J. M. Johnson, D. Munasinghe, D. Eyelade, and S. Cohen, “An integrated evaluation of 

the National Water Model (NWM)–Height Above Nearest Drainage (HAND) flood 

mapping methodology,” Nat. Hazards Earth Syst. Sci., vol. 19, no. 11, pp. 2405–2420, Nov. 

2019, doi: 10.5194/nhess-19-2405-2019. 

[10]     M. L. Follum, R. Vera, A. A. Tavakoly, and J. L. Gutenson, “Improved accuracy and 

efficiency of flood inundation mapping of low-, medium-, and high-flow events using the 

AutoRoute model,” Nat. Hazards Earth Syst. Sci., vol. 20, no. 2, pp. 625–641, Feb. 2020, doi: 

10.5194/nhess-20-625-2020. 

[11]     X. Zheng, D. R. Maidment, D. G. Tarboton, Y. Y. Liu, and P. Passalacqua, “GeoFlood: 

Large‐Scale Flood Inundation Mapping Based on High‐Resolution Terrain Analysis,” Water 

Resour. Res., vol. 54, no. 12, Dec. 2018, doi: 10.1029/2018WR023457. 

[12]     K. Dobbs, “Toward Rapid Flood Mapping Using Modeled Inundation Libraries,” 

University of Kansas, 2017. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



National Water Center Summer Institute 2024   

61 

Chapter 5 
Rapid Flood Inundation Mapping for Catastrophic 
Floods Due to Dam Failures 

Shivakumar Balachandaran1, Ayman Mokhtar Nemnem2, Reza Saleh Alipour3 and 

Parvaneh Nikrou4 

1The University of South Carolina; sb106@email.sc.edu  

2The University of South Carolina; amokhtar@email.sc.edu 

3The University of Alabama; rsalehalipour@crimson.ua.edu  

4The University of Alabama; pnikrou@crimson.ua.edu 

Academic Advisors: Erfan Goharian, University of South Carolina, goharian@cec.sc.edu ; Jasim 

Imran, University of South Carolina, imran@sc.edu; Steven J. Burian, The University of Alabama, 

sburian@ua.edu; Sagy Cohen, University of Alabama. 

Summer Institute Theme Advisors: Sagy Cohen, University of Alabama, sagy.cohen@ua.edu; 

Xingong Li, Kansas University, lixi@ku.edu  

Abstract:  

Dam operations and catastrophic failures can severely impact lives and properties. While 

conventional hydrodynamic models can generate flood inundation maps using numerical 

methods to solve shallow water equations, these models are complex and computationally 

intensive. This study uses two terrain-based models, OWP HAND-FIM and FLDPLN, to 

generate the inundation maps for near real-time operational applications. The dam-break flood 

hydrograph is empirically calculated as a function of the normal reservoir pool level. The Fall 

River Dam in Kansas is used as a case study. The peak discharges are attenuated along 

downstream reaches using a simple analytical solution derived from the diffusive wave equation. 

These are used to generate flood inundation maps using the two terrain-based models. The maps 

are evaluated using a benchmark HEC-RAS model with quantitative metrics and flood impacts 

are analyzed. The results show that terrain-based models can effectively generate flood 

inundation maps, with the OWP HAND-FIM model achieving an accuracy of 92% and the 

FLDPLN model with an accuracy of 88%. The computation runtime for the approach is very 

short, just a few minutes, compared to 17 hours for HEC-RAS. The proposed approach of 

mapping dam-break inundation can provide near real-time flood impact assessment and 

scalability for dams across the USA.  

1. Motivation 

Dam operations can lead to a sudden release of water causing damage to property and life losses 

downstream of the dam (Devi et al., 2022, Ge et al., 2022). In unforeseen situations, these dams 

can fail and cause catastrophic flooding. In this study, rapid Flood Inundation Maps (FIMs) are 

generated using terrain-based models downstream of the dam. Rapid FIM can be useful in 

developing quick flood inundation maps for dam operations causing significant flash floods or 

during catastrophic failure of dams due to overtopping or piping. This study uses a simple 

analytical model derived from the diffusive wave equation with empirical closures for 

determining the peak discharge (Qpeak) for downstream reaches in the modeled domain. This 



National Water Center Summer Institute 2024   

62 

can help in developing inundation maps for different scenarios related to dam operations in a 

short time. Also, these terrain-based models give the advantage of scalability and can be used for 

the entire CONUS. The low-complex terrain-based models can generate FIMs in a few minutes 

while the hydrodynamic models take several hours. 

2. Objectives and Scope  
The objective of this study is to investigate the ability of terrain-based models to accurately 

generate FIMs for flooding caused by dam operations and failures. The Qpeak are determined 

using a simple analytical solver and are provided as inputs to the OWP HAND-FIM (Office of 

Water Prediction (OWP) Height Above Nearest Drainage (HAND) and FLDPLN models. The 

analytical Qpeak solver allows scalability, as it can be solved for most large dams in the US. The 

FIMs generated by these terrain-based models are compared with the U.S. Army Corps of 

Engineers, Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model.  Qpeak 

simulated by the HEC-RAS simulation is also used to allow direct comparison between the 

models. Finally, a quantitative analysis of these maps is studied to evaluate the accuracy of 

terrain-based models for flash floods due to dams.  

3. Previous Studies 

The FIM and dam failures can be generated broadly in two ways, hydrodynamic models, and 

data-driven models. Hydrodynamic models are physically based models that solve mass and 

momentum equations. HEC-RAS has been widely used in performing hydrodynamic and dam 

break simulations (Xiong, 2011). In recent times, data-driven models have been used for 

developing dam breach FIMs. Pianforini et al., (2024) developed a surrogate machine learning 

model using video frame prediction techniques for near real-time inundation maps using the 

results of hydrodynamic models for dam break flows. The ability of predictions through such 

models might be limited to the cases used for training and is challenging to scale up due to the 

lack of dam breach FIM observations. The present work proposes a new methodology where 

the analytical model for determining the peak discharge is combined with the terrain-based 

models.  

4. Methodology 

In this section, we first introduce our workflow which involves a five-step process (Figure 1), 

followed by a description of the case study, the analytical model for diffusive wave routing, dam 

break discharge estimation, OWP HAND-FIM, FLDPLN, and HEC-RAS models.  

A hydro-conditioned Digital Elevation Model (DEM), retrieved from the Kansas Lidar project 

by the Kansas Biological Survey Center, with a 10-meter resolution was employed for the 

FLDPLN and HEC-RAS models, while a separate 10-meter DEM from USGS (3DEP) was 

used by default in the operational pipeline of the OWP HAND-FIM model. Both hydro-

conditioned DEMs ensured continuous water flow across the terrain, including through culverts 

and bridges.  

In the model setup stage, the HEC-RAS model is used to simulate two dam break scenarios 

which will be used as a benchmark for the terrain-based model evaluations.  
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The peak discharge attenuation is determined using an analytical solver. The Qpeak for the two 

scenarios—overtopping and normal pool level (sunny day failure)—is determined through 

breach simulation and empirical methods, respectively. The performance of the two terrain 

models is assessed through both quantitative and flood impact measures.   

 

Figure 1: The schematic diagram of the workflow of the study. 

4.1. Case Study  

The Fall River Lake Dam (latitude 37.6098° N and longitude 96.0575° W), situated in 

Greenwood County, Kansas (Figure 2), is an earthen gravity dam with a height of 28.6 meters. 

According to the National Inventory of Dams, the dam has a maximum normal operation 

storage capacity of 316 million cubic meters. The watershed area drained by the dam spans 

approximately 1,515 square kilometers. This dam is classified as having a High Hazard Potential, 

indicating that failure or misoperation will likely result in the loss of human life and significant 

property damage (U. S. Army Corps of Engineers, 2024). The classification is due to the potential 

downstream impact on populated areas and critical infrastructure. Figure 2 shows the location 

of the Fall River dam as well as the U.S. Geological Survey (USGS) gages and building footprints 

located in the vicinity of the Fall River, which are represented by red points. 

 

Figure 2: The Fall River Dam location along with the downstream river reach, USGS gages, and building footprints 

in the vicinity of the Fall River. 
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We calculated the Fall River Dam storage elevation curve 

(Figure 3) from the bathymetric survey of the Fall River 

Lake reservoir conducted by the Kansas Biological 

Survey (KBS) in 2010 (Kansas Biological Survey, 2011). 

The storage elevation curve is processed using the 

Storage Capacity geoprocessing tool under the ArcGIS 

Spatial Analyst package. The total reservoir capacity at the 

dam crest was determined to be 501 million cubic meters.  

4.2. Qpeak Solver Using Diffusive Wave Equation 

The attenuation of the peak discharge is determined using the following equations (Paiva & 

Lima, 2024). 

𝑄(𝑥)

𝑄0
=

1

[1 + 𝜑𝑥]
𝛽
3

 

Where, 𝜑 is the peak attenuation factor and 𝛽 is the flow rating exponent. The peak 

attenuation factor is determined using the following equation, 
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The 𝑤𝑡 is the width of the flood plain and 𝑤 is the width of the channel. 

𝐶′ is the relative curvature of the flood hydrograph at the peak considered constant as  

5.78S-0.33 where S is the asymmetry parameter of the hydrograph. The hydraulic diffusivity  

𝐷ℎ0 is determined using the following equation: 

(2) 

𝐷ℎ0 =
𝑄0

2𝑤𝑆0
(1 − 𝜗2) 

The Vedernikov number in the above Eq. 3 is determined using the following equation: 

(3) 

𝜗 =
2

5

𝑐0

𝑐𝑑
 

Where 𝑐0 is the flood wave celerity accounting for the floodplain storage and 𝑐𝑑 is the 

dynamic wave celerity. The width of the river is determined as 75 m from the digital 

elevation model using HEC-RAS tools and the ratio of channel width to the floodplain 

width is determined as 10. The widths are generalized here to be a constant but in future 

work the floodplain widths can be determined from the hydrotable of OWP HAND FIM. 

The slope of the channel is 0.001 taken from the DEM longitudinal profile using the 

HEC-RAS model.  

(4) 



National Water Center Summer Institute 2024   

65 

4.3. Estimating Dam Break Flow  

The estimation of dam breach parameters—such as breach width, formation time, and peak 

flow—is important for simulating downstream flood wave routing. Several empirical methods 

have been developed to predict these parameters, including those by MacDonald & Langridge‐

Monopolis (1984), the Bureau of Reclamation (1988), Von Thun & Gillette (1990), and Froehlich 

(1995 & 2008).  

Two scenarios were considered for estimating the dam break 

peak flow. In the first scenario, the breach process is 

simulated using HEC-RAS for the overtopping failure, and 

the resulting breach hydrograph is routed using the analytical 

equation for terrain-based models. In the second scenario, 

instead of simulating the breach, a synthetic breach 

hydrograph (Figure 4) is developed using Froehlich's (1995) 

empirical equation (Equation 5) as an initial condition for 

dam break simulation in HEC-RAS. The empirical equation 

is used to determine the peak dam breach flood as it is found 

to have the least uncertainty bandwidth among the methods 

for estimating the peak breach outflow 𝑄𝑃 (Wahl, 2004). 

The dam breach formation time 𝑡𝑓, defined as the time taken from the breach's initial erosion to 

its final development, is calculated using Froehlich's (2008) empirical equation (Equation 6). 

Consequently, the synthetic hydrograph is developed assuming a triangular shape (Equation 7). 

𝑄𝑃 = 0.607 (𝑉𝑤
0.295 ℎ𝑤

1.24) (5) 

𝑡𝑓 = 63.2 √
𝑉𝑤

𝑔 ℎ𝑏
2 (6) 

𝑉 =
𝑄𝑃 𝑇

2
 (7) 

Where 𝑉𝑤 and ℎ𝑤 are the volume and the depth of water, respectively, at the time of the dam 

failure above the lowest breach cross-section level. ℎ𝑏 is the final breach height. 𝑉 and 𝑇 are the 

total volume and the synthetic hydrograph base time respectively.  

4.4. OWP HAND-FIM 

The OWP HAND-FIM model is typically used to convert the streamflow from the National 

Water Model to the inundation map. The OWP HAND-FIM version 4  is a no-physics model 

that produces static flood inundation maps using Synthetic Rating Curves (SRC) which convert 

streamflow predictions in a river reach to water height (stage; Aristizabal et al., 2023). The model 

requires dependencies such as Docker and GitHub. The first step involves identifying the HUC-

8 boundaries within which the study area is located. The Fall River study area is within 11070102 

HUC-8. After determining the HUC-8 boundaries, input folders containing the processed 

HAND raster for the mainstem, and branches are downloaded from an Amazon S3 bucket 
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(NOAA Office of Water Prediction, 2023). Detailed FIM hydrofabric information, including 

hydraulic radius, wet area, volume, and SRCs for each sub-catchment and stream network, is 

stored in a ‘hydrotable.csv’ file. Each stream network within HUC-8 has a unique ID. In this 

project, we aim to simulate the effect of a dam break on the Fall River. To achieve this, we 

identify the specific stream IDs related to the reaches downstream of the dam and assign the 

calculated discharges from the analytical method to these stream IDs in OWP HAND-FIM. 

4.5. FLDPLN Model 

The FLDPLN model (Kastens, 2008) is a low-complexity flood inundation model designed for 

mapping flood extents and depths, particularly useful for rapid assessments using observed or 

forecasted stream stages. The model operates by segmenting the stream networks and utilizing 

mechanisms such as backfill and spillover flooding to determine flood inundation. This process 

includes identifying stream networks, generating segments, and iteratively determining the 

minimum depth to flood (DTF) at the flood source (i.e., stream) pixels (FSPs) to inundate 

floodplain pixels (FPPs). The flood inundation relations are organized by tiles, with each tile 

containing all the FSPs that can flood the FPPs within the tile. Flood inundation mapping 

involves estimating the depth of flow (DOF) for FSPs from gauge observations or forecasts and 

mapping flood depths for FPPs by calculating the maximum flood depth from multiple FSPs. 

The attenuated Qpeak for each river reach is converted into depths using the SRC from the 

OWP HAND-FIM model.  

4.6. Hydrodynamic Modeling using HEC-RAS 

A 2D hydrodynamic flood model has been developed using HEC-RAS, version 6.4. HEC-RAS 

solves the 2D full momentum Shallow Water Equations (SWE) using the Eulerian-Lagrangian 

method (ELM). The objective of developing this computationally intensive numerical model is 

to serve as a benchmark for comparison with low-complexity, terrain-based FIM models. 

The HEC-RAS model incorporated the Fall River Dam break simulation and hydraulic routing 

of the surge wave for the 50 km downstream river to Fredonia City. The hydrodynamic model 

used the same 10-meter DEM as that of the FLDPLN model. The model utilized a 2D 

unstructured mesh with a 30-meter cell size, and a refinement region for the river floodplain 

with a 10-meter cell size. Break lines were defined for the main river as well as the tributaries 

downstream of the dam. The total number of cells in the 2D domain was approximately 1.5 

million. The 2D SWE-ELM equation set was used with a computational interval set to 30 sec. 

A Manning's roughness coefficient of 0.06 s/m-1/3, retrieved from the OWP HAND-FIM hydro 

tables, was applied uniformly over the entire domain. The Qpeak for two scenarios, as explained 

in section 4.3, is routed using the HEC-RAS model. 

4.7. FIM Evaluation 

Quantitative and impact analyses are used to evaluate the performance of the OWP HAND-

FIM and FLDPLN models, using the HEC-RAS as the benchmark FIM. One common 

approach for quantitative analysis of flood extent involves binary contingency statistics, 

comparing true positives (TPs), false positives (FPs), false negatives (FNs), and true negatives 

(TNs).  

The contingency statistics are used to calculate metrics like the critical success index (CSI), F1-

score, Recall, false alarm rate (FAR), false negative rate (FNR), overall accuracy (ACC), and 
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precision. CSI measures the accuracy of positive predictions, considering false alarms and missed 

events. The Recall, also known as sensitivity, and FAR play crucial roles in flood modeling, 

indicating a model's ability to accurately detect flooding and the extent of over-prediction, 

respectively. Accuracy measures the proportion of correctly identified pixels (both positive and 

negative) out of the total instances. Precision measures the proportion of true positive 

predictions out of all positive predictions made by the model. The F1-score is the harmonic 

mean of precision and sensitivity, providing a single metric that balances both metrics. The FNR 

indicates the percentage of real flood occurrences that the model fails to predict.  

In addition to flood extent, we also evaluated the flood depth predicted by the models against 

the benchmark. The metrics used to evaluate accuracy include Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). Nash-Sutcliffe 

Efficiency (NSE) assesses efficiency, while Bias and Percent Bias (PBIAS) indicate a model's 

tendency to produce systematic errors. 

RMSE measures the average magnitude of the errors between predicted and observed values. 

It's always non-negative, with lower values indicating better accuracy. A RMSE close to 0 is 

desirable. NSE measures the relative magnitude of residual variance compared to observed data 

variance. Its values range from -∞ to 1. Generally, NSE > 0.5 is considered acceptable for 

hydrological models, indicating the model captures more variance than the mean. A negative 

value means model predictions are worse than the mean of observed data. Bias measures the 

average difference between predicted and observed values. Positive values indicate 

overestimation, while negative values indicate underestimation. Ideally, bias should be close to 0 

for an unbiased model.  

Moreover, as the study area includes urban land use, specifically Fredonia City in the southeast 

of Kansas, we investigated the building footprints (Microsoft, 2018) to determine which model 

provides a better estimation of the number of inundated buildings compared to the benchmark 

map. 

5. Results and Discussions 

In this section, first the peak discharge and attenuations followed by the quantitative, and impact 

FIM evaluations are presented for the second scenario, where the dam break discharge is 

estimated using empirical equations. The Qpeak estimated using Eq. 5 at the dam was 10,000 

m3/s. The attenuation determined using the 2D HEC-RAS simulation along a 45 km 

downstream section is 25% while the analytical model estimated the attenuation to be 20% as 

shown in Figure 5. Figure 6 shows the inundation extent and depth for all three models. Figure 

7 (a) and (b) show the comparison of the OWP HAND-FIM and FLDPLN models, respectively, 

with the HEC-RAS model. The quantitative metrics (precision, recall, F1-score, CSI, accuracy, 

FAR, and FNR) are shown in Figure 9. The OWP HAND-FIM predicted the inundation areas 

with an accuracy of 92.1%. The model also achieved a high recall rate of 83% and a reasonable 

false alarm rate of 11.5%, indicating its robustness in accurately identifying flood-prone areas. It 

is worth noting that the HEC-RAS simulation time was about 17 hours in a high-performance 

computing system while HAND-FIM was less than a minute.  This shows that the methodology 

of routing the discharge using the analytical model and generating the inundation maps using 

OWP HAND-FIM is robust and can potentially be adopted for rapid and large-scale FIM caused 

by dam break failures and dam operations. The FLDPLN model yielded an accuracy of 87.5% 
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when compared to the HEC-RAS model. The 

reason for the overestimation of the flood 

extent in the FLDPLN model can likely be 

attributed to errors in estimating stages using 

the SRCs from OWP HAND-FIM. When 

compared to the stages from the HEC-RAS 

model, the SRCs overestimate the stages for 

the corresponding peak discharges computed 

from the analytical model. It is worth noting 

that the FLDPLN model’s inundation map is 

estimated using both backfill and spillover 

techniques making it more sensitive to 

overprediction of stage. The OWP HAND-

FIM model, on the other hand, does not account for spillover resulting in an underestimation 

of the inundation extent for the same stages in the downstream reaches. The stages from HEC-

RAS model can be determined and used as an input for the FLDPLN model to estimate the 

error originating from the HAND-FIM SRCs. This will be included in the future scope of this 

project. 

 

   

Figure 6: Inundation extent and depths for a) HEC-RAS, b) HAND-FIM, c) FLDPLN 

  

Figure 7: Confusion matrix results comparing the performance of low-complexity FIM models to the HEC-RAS 

model. (a) shows the results for the OWP HAND-FIM model and (b) presents the results for the FLDPLN model. 

Though the inundation extents are more reliable with the OWP HAND-FIM model the depths 

are exaggerated due to the SRC errors and inherent limitations in the model’s depth-predictions 

(multi ‘level paths’ approach). This limits the usage of OWP HAND-FIM, in its current version, 

Figure 5: Peak discharge attenuation using HEC-RAS 
and Diffusive wave equation.  



National Water Center Summer Institute 2024   

69 

for predicting floodwater depth. Figure 8 shows the difference in depth between terrain-based 

models and the HEC-RAS model. Results for evaluating depth are shown in Figure 10. The 

RMSE of 4.34 m for the HAND model, compared to 4.63 m for the FLDPLN model, suggests 

that the HAND model exhibits slightly higher accuracy. Additionally, lower MAE and MAPE 

values for HAND compared to FLDPLN further support its superior accuracy. The Bias of 1.55 

for the HAND map indicates an overestimation of flood depths. In contrast, the FLDPLN map 

shows a much higher Bias of 4.24, suggesting a significant overestimation of flood depths on 

average. The HAND model predictions are 1.56 units higher than the observed values, indicating 

an overestimation. This is confirmed by the PBIAS of 41.34%, indicating a significant 

overestimation bias. The negative NSE values (-2.15 for HAND and -2.59 for FLDPLN) 

indicate poor performance for both models, as their predictions are worse than the mean of the 

observed values.  

  

Figure 8:  Flood depth differences between HEC-RAS and a) HAND-FIM, b) FLDPLN  

  

 
 

 

A quick impact analysis (Figure 11) show that the number of buildings flooded by the models is 

679, 577, and 1146 for HEC-RAS, OWP HAND-FIM, and FLDPLN models respectively. This 

confirms the overestimation of flood-prone buildings by the FLDPLN model. However, the 

underestimation of buildings by the HAND model also poses challenges in using it as a reliable 

source for providing accurate flood risk maps. 

Figure 9: Evaluating model extent against HEC-
RAS Figure 10: Evaluating model depth 

against HEC-RAS 
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Figure 11: Flood impact assessment results for the Fall River Dam break using different FIM models (HEC-RAS, 

OWP HAND-FIM, FLDPLN) 

6. Conclusion 

This study demonstrates the effectiveness of terrain-based models OWP HAND-FIM and 

FLDPLN in generating rapid flood inundation maps for floods caused by dam failures and 

operations. The models were evaluated using the benchmark HEC-RAS model using various 

quantitative metrics. These findings underscore the potential of using low-complexity, terrain-

based models for near real-time flood mitigation, significantly reducing computation time 

compared to traditional hydrodynamic models.  Therefore, this study highlights the following 

findings: the practical applicability of terrain-based models in enhancing flood preparedness and 

response, particularly in regions where computational resources are limited, supports the 

development of terrain-based FIM for dam related floods. 

Comments from authors: 
Graduate students should embrace simplicity and interdisciplinary learning for innovative and 

comprehensive flood management solutions and build networks with peers and professionals to 

foster collaboration and innovation in flood management. NWS/NWC leadership could 

integrate terrain-based models like HAND-FIM and FLDPLN for enhanced real-time flood 

response and support rapid research initiatives. Future research could focus on integrating these 

models with other predictive tools, evaluating their performance across different geographies, 

leveraging machine learning for improved accuracy, and developing user-friendly platforms for 

community engagement and resilience. 
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Supplementary Materials:  

The following performance metrics are used for evaluating the inundation extent (Equations S1 

to S7) and depth (Equations S8 to S13) of the terrain-based models (OWP HAND-FIM & 

FLDPLN) with the HEC-RAS model.  
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Where 𝑂 represents the observed data (HEC-RAS model) and 𝑃 indicates predicted data 

(terrain-based FIM). 

Root Mean Square Error (RMSE) measures the average magnitude of the errors between 

predicted and observed values. It's always non-negative, and lower values indicate better 

accuracy. It means an RMSE close to 0 is desirable. Nash-Sutcliffe Efficiency (NSE) measures 

the relative magnitude of residual variance compared to observed data variance. Its Values range 

from -∞ to 1. Generally, NSE > 0.5 is considered acceptable for hydrological models, indicating 

the model captures more variance than the mean. A negative value means Model predictions are 

worse than the mean of observed data. 

Bias measures the average difference between predicted and observed values. Positive values 

indicate overestimation, while negative values indicate underestimation. Ideally, bias should be 

close to 0 for an unbiased model. Mean Absolute Error (MAE) measures the average magnitude 

of errors in a set of predictions, without considering their direction (i.e., whether the predictions 

are overestimations or underestimations). MAE values can range from 0 to ∞, where 0 indicates 

perfect accuracy. 

An RMSE of 4.34 for the HAND map vs. 4.63 for the FLDPLN map means the HAND map 

is slightly more accurate. The MAE of 3.08 for the HAND map suggests that it has moderate 

accuracy. The higher MAE of 4.36 for the FLDPLN map compared to the HAND map suggests 

that the FLDPLN map has lower accuracy and requires more significant improvements to reduce 

the prediction errors. The Bias of 1.55 for the HAND map shows that it is overestimating flood 

depths. The FLDPLN map significantly overestimates flood depths by 4.24 units on average. 

The reason for the lesser amount of Bias in the HAND map is that it has both overestimations 

and underestimations, which counterbalance each other. In contrast, the FLDPLN map is 

completely overestimating, which is why the RMSE, MAE, and Bias values are almost the same. 

The negative NSE values in this case (-2.15 for HAND and -2.59 for FLDPLN) indicate that 

both models perform poorly, predicting worse than the mean of the observed values. This poor 

performance can be attributed to the extreme depth values in the models, which significantly 

impact the calculation when squared. 
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Abstract: When floods occur, first responders face challenges in identifying where vulnerable 

populations will be. However, hazard forecasts lack detailed information about exposure and 

vulnerability. In this study, we create an automated workflow that transitions from hazard to 

impact-based flood forecasting. Using the National Water Model (NWM) forecasted 

streamflow, we generate Flood Inundation Maps (FIMs) using the Office of Water Prediction 

HAND-FIM, calculate the forecasted water depth, and incorporate a Social Vulnerability Index 

(SVI) to predict the flood impacts. These forecasts are shared via an easy-to-use, interactive 

web platform accessible to the community. This framework will allow stakeholders and 

decision-makers to plan for flood events. 

 

1. Motivation 

Flood forecasting represents a significant advancement in flood risk management, offering 

insights that enhance preparedness and response strategies [1], [2]. However, current flood 

forecasts in the United States do not predict where a flood will have the greatest impact on 

humans. These forecasts do not provide information about flood forecast confidence, flood 

depth, or the potential risk to life and property. This is information that would benefit emergency 

responders and planners. We aim to fill this gap by using forecasted data to produce impact 

maps that will include information about flood hazards and population vulnerability.   

2. Objectives and Scope  

This work aims to provide a framework for forecasting flood impact in different temporal scales. 

This workflow uses the National Water Model (NWM) forecast from the National Oceanic and 

Atmospheric Administration (NOAA)  as a base and builds on it with three main innovations: 

(1) calculate the flood forecast confidence from the NWM hourly forecasts, (2) incorporate 

mailto:h.elhaddad@wmich.edu
mailto:syu3cs@virginia.edu
mailto:cwatts@umass.edu
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depth maps in addition to an inundation forecast, and (3) calculate social vulnerability to flooding 

by considering indicators such as access to transportation, population density, age, and disability. 

By shifting the focus from traditional flood hazard metrics to a more comprehensive analysis of 

community-specific vulnerabilities, our study aims to improve the effectiveness of emergency 

response efforts. The results will provide a valuable scientific basis to stakeholders and 

authorities in planning sustainable strategies to mitigate flood impacts.  

3. Previous Studies 

Several previous studies have combined flood hazards and social vulnerability to create 

comprehensive impact maps, which provide valuable insights for disaster management and 

mitigation efforts [3], [4], [5], [6]. For instance, a study [3] developed a method to assess social 

vulnerability to floods by integrating various exposure and coping capacity indicators. This 

approach was applied in Ponferrada, Spain, using public data and an analytic hierarchy process 

to create detailed social vulnerability maps. These maps help in flood risk planning and 

management. Similarly, another study [4] introduced a method for estimating flood hazard, 

vulnerability, and risk at the household level in Nan Province, Thailand. They used flood 

simulation models for different return periods and incorporated field data and surveys to 

produce flood risk maps that reflect real-world conditions and guide effective flood mitigation 

measures. A study [5] employed dasymetric mapping techniques and flood maps to estimate that 

41 million people are exposed to the 100-year floodplain across the contiguous United States. 

This research highlighted the higher exposure and susceptibility of socially vulnerable 

populations living in flood-prone areas, such as those with lower incomes and more mobile 

homes, compared to national averages. Additionally, a study [6] focusing on Harris County, 

Texas, combined flood susceptibility and social vulnerability mapping to enhance flood risk 

analysis. This study used advanced geospatial data and flood modeling to assess risk disparities 

and inform effective flood mitigation measures, particularly in socially vulnerable communities. 

Previous studies provide very important insights into extreme event mapping, climate impact 

assessment and retrospective impact analysis. Here, we expand on previous studies by 

developing, evaluating, and mainstreaming a workflow to transition from hazards to impact-

based flood forecasting.  

4. Methodology 

In this study, we constructed an automated workflow (operational) that can produce real-time, 

and historical observations of flood impact maps in two temporal scales (18 hours and 5 days). 

This operational workflow is ready to be published on an interactive platform (ArcGIS instant 

app) providing real-time forecast impact maps. The impact maps are created by coupling the 

flood forecast confidence (only on an hourly-basis scale), flood depth maps (flood hazards), and 

Social Vulnerability Index (SVI) maps. The workflow (Fig. 1) includes the following steps: (1) 

retrieve the streamflow data, (2) generate FIM and depth maps using OWP HAND-FIM (Office 

of Water Prediction Height Above Nearest Drainage - Flood Inundation Model), (3) create SVI 

maps, (4) couple the flood depth, flood forecast confidence, and SVI maps to produce impact 

maps, then overlay buildings, hospital, and schools layers over the impact maps, and (5) publish 

the maps (FIMs and depth maps, SVI, and impact maps with building layer on ArcGIS Instant 

App.  
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Additionally, we tested an approach to mitigate the inconsistency in the hourly forecast data by 

creating a flood forecast confidence map. We tested this approach on Tropical storm Beryl but 

it was not included in the main workflow.  

4.1. Retrieve the streamflow data 

The NWM became operational in the United States in 2016, predicting streamflow in all streams 

and reaches across the country [7]. This large-scale hydrological model uses meteorological 

inputs to provide streamflow forecasts nationwide. The model delivers forecasts at different 

temporal scales: short-range forecasts (hourly; up to 18 hours) forced with meteorological data 

from the High-Resolution Rapid Refresh and Rapid Refresh models, medium-range forecasts (5 

day forecast) forced with Global Forecasting System model output [8]. The streamflow data in 

our workflow are divided into two categories: real-time forecast (18 hour and 5 days) and 

historical streamflow observations.   

 

Figure 1. Proposed framework for creating the operational forecasted impact maps using depth and SVI maps.  

4.2. Generate Flood Inundation Maps using OWP HAND-FIM 

Beginning in 2023, the National Water Center (NWC) started deploying Flood Inundation Maps 

(FIMs) generated from the NWM streamflow forecasts, which will be available nationally by 

2026 [7] [8]. Instead of hydrodynamic models, the NWC employs a simplified model for 

estimating flood inundation, referred to as OWP HAND-FIM (height above nearest drainage - 

flood inundation model) using the streamflow forecasts as input. There are a myriad of models 

that forecast flood inundation, each varying in complexity and dimensionality. Hydrodynamic 

models, for instance, solve the shallow water equations to simulate water movement and 

inundation patterns. However, these models require extensive input data and significant 

computational resources to process these inputs and solve the equations, making real-time 

implementation and large-scale application challenging [9]. Here lies the advantage of using 

HAND-FIM for short-term forecasting.  

HAND is a terrain-based method that normalizes elevations within Digital Elevation Models 

(DEMs) to the nearest flow path and extends the stage elevation across that area [1], [10], [11]. 
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It conserves neither mass nor momentum and does not attempt to solve the flow equations used 

in more complex models [9], [12]. This model is computationally much simpler to perform, 

making it an easy choice for creating real-time or near real-time flood inundation maps [9], [11], 

[13]. Our framework uses this model on the 18-hour streamflow forecasts retrieved from the 

National Water Model to produce flood inundation maps and depth maps.  

Estimate the flood depths  

For the 5 day forecast, a flood inundation map is provided by the National Water Model. We 

use the FIM to identify flooded pixels (flooded = 1, non-flooded = 0). We then extract ground 

elevation values for each flooded pixel from the DEM. The workflow subtracts the ground 

elevation from the flood surface elevation for each pixel using the formula: Flood Depth = 

Flood Surface Elevation - Ground Elevation. Next, we generate a depth map showing water 

depth across the inundated area. Finally, the depths are classified based on Federal Emergency 

Management Agency (FEMA) Guidance for Flood Risk Analysis and Mapping [14]. FEMA 

categorizes the depth severity into four classes (<0.4 m is low severity, 0.4-0.8 m is moderate 

severity, 0.8-1.8 m is high severity, and >1.8 m is high severity.  

4.5. Create Social Vulnerability maps 

The United States Center for Disease Control (CDC) calculates a social vulnerability index (SVI) 

that utilizes the American Community Survey (ACS) census data to determine the relative social 

vulnerability of every census tract in the United States [15]. The SVI considers indicators such 

as socioeconomic status, household composition, and housing type to evaluate the ability of a 

targeted community to prepare for, respond to, and recover from disasters [16], [17]. The SVI 

ranks each U.S. Census tract based on social indicators grouped into four themes: (1) 

socioeconomic status (poverty, unemployment, housing cost burden, no health insurance), (2) 

household (aged 65 or older, aged 17 or younger, disability), (3) language barrier, and (4) housing 

type and transportation ( multi-unit structures, mobile homes, crowding, no vehicle, group 

quarters) [15], [18]. The SVI calculation involves cleaning the data, determining the percentage 

of a specified indicator, ranking it, setting flags for high vulnerability, and summing these flags 

to obtain the final SVI score. 

The process begins with data cleaning, where tracts with missing data are replaced by averaging 

the values of neighboring tracts. The percentage of the specified indicator is calculated using the 

formula: Percentage of indicator = (raw estimate of indicator/relevant total population) ×100.  

These percentages are then ranked within the dataset to determine their percentile ranks Flags 

for high vulnerability are set by comparing the percentile rank to the 90th percentile threshold: 

if the percentile of the indicator is greater than or equal to 0.90, the flag is set to 1, indicating 

high vulnerability; otherwise, it is set to 0. The final SVI score for each tract is obtained by 

summing the flags for all indicators. We create a classified (number of classes equal to the 

maximum SVI) raster map that shows the geospatial distribution of the calculated SVI. 

4.6. Impact map  

We designed the impact map to comprehensively assess flood impacts by integrating both 

hydrological and social data. The impact map is obtained by multiplying the depth map, flood 

forecast confidence map, and SVI map. This approach ensures each pixel reflects the severity of 

flooding, the likelihood of occurrence, and the vulnerability of the population. The resulting 
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impact map highlights areas with varying levels of vulnerability, combining both physical and 

social dimensions of flood risk. 

Flood Forecast Confidence Map  

This process was tested on the hourly basis forecast, and it was not included in the workflow. A 

flood forecast confidence map indicates the reliability of flood predictions, showing the 

likelihood of an area being flooded. It is important because it helps decision-makers assess the 

certainty of flood forecasts, improving preparedness and response strategies. To create the flood 

forecast confidence map using the Flood Inundation Maps (FIMs), we followed the process 

outlined in figure 2. Every hour, the NWM provides a forecast for each of the next 18 hours. 

This means that a single hour will be forecasted 18 times, at each of the previous hours. Within 

the 18 iterations, the single-hour forecast suffers from inconsistency, where some iterations 

predict widespread flooding and other iterations predict little. For example, a forecast published 

at 7:00 am (real time) for 5:00 pm shows a specific area as flooded, but the same forecast for 

5:00 pm at 8:00 am (real-time) shows the same area as non-flooded. This inconsistency poses a 

challenge for decision-makers, watching flood predictions change from hour to hour. To address 

this inconsistency, we calculated the hourly flood forecast confidence based on the previous 

forecasts, to produce a forecast confidence map (Fig. 2).  

First, we collected all the forecasted streamflow data from the NWM for the same forecast hour. 

We calculated a FIM raster from each, where flooded pixels are assigned a value of 1 and non-

flooded pixels a value of 0. Next, we calculated the percentage of times each pixel was predicted 

to be flooded across all forecasts. This results in a confidence value for each pixel, ranging from 

0 to 1. 

During this process, we encountered and resolved two specific problems. First, we needed to 

retain the confidence value of pixels that were non-flooded (value of zero) in the new FIM but 

had been flooded in previous FIMs. To address this, we ensured that the confidence values of 

such pixels were carried forward rather than reset to zero. Second, for pixels that were newly 

flooded in the latest FIM and had not been flooded before, we calculated a new confidence value 

by assigning a value of 1 divided by the total number of FIMs (including the new one). This 

approach ensured that new flood occurrences were incorporated appropriately into the flood 

forecast confidence map. Finally, the flood forecast confidence map was used to adjust the new 

FIM. We multiplied the new FIM by the flood forecast confidence map, creating an adjusted 

FIM that integrates previous flood patterns and confidence values. This adjusted FIM provides 

a more accurate representation of potential flooding by incorporating both current and previous 

predictions with a confidence interval for every area. This innovation will help to better identify 

areas at risk and improve flood risk management strategies. 
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Figure 2. Proposed framework for creating a flood forecast confidence map for each forecasted timestep to 

adjust the resulting forecasted FIM.  

Operational Impact Forecast 

The previously described workflow was compiled as a Python script (see Supplementary 

Materials) to allow it to be run hourly. The script follows the following steps: (1) Download 5-

day forecast data from the NWM, (2) Import DEM and SVI, (3) Calculate depth from the 

inundation extent 4) Calculate the forecasted impact for the forecast, and (5) upload the depth 

map and the impact map to a web-hosted map that can be shared with interested parties. This 

script can be run locally on any machine and can be scheduled to run hourly as the NWM forecast 

updates. The current iteration of our script focuses on Houston, TX but a user can adjust the 

workflow to any area of interest in the country.  

5. Results: Case Study 

Our workflow requires minimal inputs to generate operational forecasted impact maps on both 

an 18-hour basis and for 5-day forecasts. Designed for ease of use, this workflow can be applied 

to any location across the United States. Additionally, it can produce historical FIMs and impact 

maps for any past flood events nationwide. The primary inputs for this process include the SVI 

data geodatabase, Hydrologic Unit Code (HUC) ID, a shapefile of the study area, and a DEM. 

The workflow is structured to ensure that it can be utilized effectively by a range of users, from 

emergency responders to urban planners. The integration of SVI data allows for a better 

understanding of flood impacts, considering not only the physical extent of flooding but also 

the social vulnerabilities of affected communities. This dual approach enhances the relevance 

and applicability of the generated maps, providing crucial information for decision-making in 

disaster management. 

To validate the workflow, we tested it on two significant events in Houston: (1) Post-Tropical 

Cyclone Beryl for real-time forecasts (hourly-basis forecast and 5-day forecast) (July 08-13, 2024), 

and (2) Hurricane Harvey (August 25-29, 2017) using historical streamflow observations. These 

case studies demonstrate the capability of the workflow to generate detailed and actionable flood 

impact maps. For Post-Tropical Cyclone Beryl, we used real-time streamflow data from the 

National Water Model (NWM) to produce hourly FIMs and impact maps, showcasing the 

workflow's real-time application. For Hurricane Harvey, we used historical streamflow 
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observations to reconstruct the event's flood impacts, highlighting the workflow's utility in 

analyzing past events. 

Post-Tropical Cyclone Beryl (2024) 

Beryl began as a hurricane, striking southeastern Texas in early July 2024 as a Category 1 storm. 

It caused extensive damage, with nearly 2 million homes in the Houston, TX area losing power 

due to strong winds and heavy rainfall. The federal government declared an emergency to aid 

recovery efforts [22]. Using the NWM hourly streamflow forecast, we calculated the flood 

forecast confidence every hour to account for hourly forecast inconsistencies (Fig. 4). We 

compared the output non-adjusted FIMs (Figs 3a, b, c; no confidence included) adjusted FIMs 

(Figs 3d, e, f; confidence included) for 6:00 pm at three consecutive hours (6:00, 7:00 and 8:00 

am) on  July 8, 2024.  Each timestep (6:00, 7:00, and 8:00 am) forecast for 6:00 pm takes into 

consideration the confidence calculation of the previous forecast (started from 12:00 am). This 

means that at 6:00 am, six forecasts of 6:00 pm were incorporated in the confidence estimations. 

Figures (3a, b, and c; defined by red rectangle) highlight inconsistencies between flooded and 

non-flooded areas. Figures (3d, e, and f; defined by red rectangle) show adjusted FIMs with 

confidence estimates demonstrating run-to-run consistency.  

The adjusted impact map (Fig. 4a) categorizes impacts into four levels (Low, Medium, High, and 

Very High), integrating flood depth with four classes of severity and SVI with nine levels of 

vulnerabilities. Additionally, a 5-day forecast impact map for Beryl on July 8th incorporates flood 

depth and SVI, shown in Fig. 4b. 

 

Figure 3. A comparison between non-adjusted (a, b, c) and adjusted FIMs (d, e, f) at three consecutive hours (6:00 

am, 7:00 am, and 8:00 am) for the same forecasted hour (6:00 pm). The area (defined by the red rectangle) shows 

forecast inconsistency in the non-adjusted FIMs, while showing consistency, in addition to flood forecast 

confidence estimates in the adjusted FIM.  
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Figure 4. shows two temporal scale forecasts of Post-Tropical cyclone Beryl. (a) the adjusted FIM (confidence 

map) and depth map with four classes of flood severity for the hourly-basis forecast. (b) the depth map with four 

classes for the five days forecast. c) SVI map shows nine levels of vulnerability (lowest =1, highest =9). d) the output 

impact map with four levels of impact for the hourly-basis forecast and 5-day forecast.  

Hurricane Harvey (2017) 

Hurricane Harvey, which struck Texas in late August 2017, was a catastrophic event. It 

intensified into a Category 4 hurricane and made landfall near Rockport, Texas. Harvey's slow 

movement brought record rainfall in Houston, with over 60 inches in some areas. The resulting 

floods caused extensive damage and significant displacement, amounting to over $125 billion in 

damages [23], [24]. We used historical streamflow observations, focusing on the peak streamflow 

on August 27, 2017, at 3:00 pm. The flood depth and SVI maps were combined to produce the 

impact map for Hurricane Harvey (Fig. 6), showcasing the integration of these elements to 

highlight areas of varying flood impacts. 

These impact maps in both case studies illustrate how integrating flood forecast data (depth and 

flood forecast confidence) with social vulnerability indices can provide a more comprehensive 

view of flood risks, aiding in more effective emergency response and planning. 
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Figure 5. shows the output of Hurricane Harvey using historical streamflow observations at the peak time of the 

flood. a) shows the depth map with four classes of flood severity b) SVI map shows 9 levels of vulnerability (lowest 

=1, highest =9). c) the output impact map with four levels of impact for the peak time of the flood. 

5.1. Limitations and future works 

HAND-FIM is the model used by the NWM because it is low complexity and can be used for 

forecasting across larger spatial domains. However, it has several drawbacks which impact the 

accuracy of the impact forecasts. First, HAND-FIM only models fluvial flood events. It excludes 

coastal and compound flooding, so our impact forecasts likely underpredict areas of high impact 

during compound flood events. Secondly, HAND-FIM underpredicts smaller catchments (4th 

order and lower) while overpredicting large-order reaches [25]. The accuracy of our impact map 

is only as good as the accuracy of the NWM HAND-FIM. So our impacts also underpredict in 

small catchments and overpredict in large reaches.  

It is hard to validate a flood forecast. There are efforts to do this for major historical floods, but 

they have their limitations. It is even harder to find a metric that can validate the human impact 

of a flood. The focus of our SVI is on a population’s immediate risk during a flood event. We 

do not attempt to capture the long-term impacts of a community being flooded. There are some 

proxy datasets that can be used to validate the impact. For example, locations of 911 calls, 

insurance claims, and disaster relief funds, can all be used to approximate the social vulnerability 

to a particular flood. Future work could analyze these datasets for particular flood events and 

compare them to the forecasted impact.  

Depth maps were generated using HAND-FIM [13]. The depths were calibrated against High 

Water Marks data from Hurricane Harvey and an alternative depth calculation model, FwDET 

v2.1 (Fig. 6). Despite the poor correlation between the two depth models and the HWMs, the 

outputs have similar trends to the HWM and both over-predict the depths. The FwDET v2.1 

model performs slightly better compared to the observed high water marks but requires 
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significantly more computational time. When comparing the two model methods to the high-

water marks based on depth classes, the two perform similarly.  

 

Figure 6. Comparison between depths in meters calculated using HAND-FIM and FwDET against the HWM, in 

which (a) the difference in water height (m) among HWM upper bound, lower bound, HAND-FIM, FwDET; (b) 

difference (in percentage) between HAND-FIM and FwDET. 

6. Conclusion 

This study developed an automated workflow to transition from hazard-based to impact-based 

flood forecasting. By using the National Water Model (NWM) streamflow predictions, we 

created Flood Inundation Maps (FIMs) with OWP HAND-FIM, estimated flood depths, and 

calculated social vulnerability index. Combined, these elements compose a framework for 

forecast impact maps. The maps can be published on an interactive web platform, providing 

accessible tools for communities and decision-makers to plan for forecasted floods. Our case 

studies on post-tropical cyclone Beryl and Hurricane Harvey demonstrated the system's 

effectiveness. Future work should address limitations such as the exclusion of coastal and 

compound flooding and explore ways to validate flood impact. 
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Supplementary Materials:  

The scripts for the framework proposed here, and the data used in the case studies can be 

found at https://github.com/clynwatts/Impact_Map_Forecasting 

Instant App:  

https://arcg.is/1jj8i12 
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Abstract:  

Current flood research relies primarily on environmental parameters to communicate flood 

risk, often overlooking the complex reality in which socioeconomic identities and systemic 

social conditions inform flood risk and exposure. This study aims to leverage the recent 

advances in geospatial datasets and machine learning algorithms to predict flood damage. We 

employ insurance-derived, terrain and land cover, socioeconomic, and hydroclimatic data to 

predict building damage cost as a flood risk proxy during Hurricane Harvey using an eXtreme 

Gradient Boosting Regression (XGBR) algorithm. We selected building damage cost as a proxy 

for flood risk, as it can serve as a direct metric of flood impact while being an understandable 

parameter to a wide array of stakeholders and encompassing the social and economic effects 

of flooding. The XGBR model demonstrated excellent fit to the data while maintaining good 

predictive capability with R² of 0.74 and bias of 1.59 % in validation through testing. The 

model's predictions were closely aligned with the observed distribution, particularly the median, 

25th, and 75th percentiles. Feature importance analysis demonstrated that the most important 

features that impacted subsequent building damage were recorded water depth, building 

property value, and percent of buildings with two floors. The calculated importance of the 

insurance-derived data for our algorithm’s predictive capabilities emphasizes the interaction 

between flood damage, flood hazard, exposure, and vulnerability, suggesting that the 

implementation of such variables can be used for more robust and inclusive flood risk 

assessment and mitigation strategies.  

_______________________________________________________________________________ 

Motivation 

Floods pose devastating impacts on life and property. Flood mitigation strategies and emergency 

response rely on the ability to make sound predictions of flood impacts at decision-relevant 

scales. Conventional process-based flood models provide information focused primarily on 

hazards, such as flood depth and inundation extent. However, the complex non-linear 

interactions among hazard, exposure, and vulnerability shape the overall flood risk. Neglecting 

exposure and vulnerability in flood risk assessment can lead to suboptimal decisions about risk 

management. 
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In disaster events, the socially vulnerable are less likely to recover and more likely to die, and 

thus, effectively addressing social vulnerability can decrease both human suffering and economic 

loss due to disasters (Flanagan et al. 2011). Advances in the study of flooding that consider 

socioeconomic parameters can facilitate more comprehensive risk mitigation policies and clearer 

risk communication (Aerts et al., 2018). Traditional flood risk products, such as flood inundation 

maps (FIMs) or high-water marks, can be difficult to interpret for the public, thus developing 

alternative, robust methods for assessing and communicating risk is essential (Bales & Wagner, 

2008). In this study, mean building damage cost over a zip code is the target variable identified 

as a proxy for flood risk. We believe that using mean building damage cost as a flood risk proxy 

can allow for a greater understanding of flood risk that does not require in-depth knowledge of 

traditional flood hazard assessment standards or hydrologic principles.  

Objectives and Scope 

This study demonstrates a novel approach to propose a flood risk proxy based on predicting 

average building damage cost at a zip code scale using Machine Learning (ML) techniques. This 

research leverages large datasets, including insurance claims data from the National Flood 

Insurance Program (NFIP), which is recognized as the foremost and most comprehensive flood 

insurance program in the United States today (Blessing et al., 2017). The method is applied to 

areas affected by Hurricane Harvey, a category 4 hurricane that devastated economically 

disadvantaged communities in Texas and Louisiana in 2017, resulting in $158 billion in damages 

and displacing over 30,000 individuals (NOAA, 2024). Through rigorous data preprocessing, 

advanced XGB Regression (XGBR) modeling techniques, and thorough performance 

assessments, this research aims to offer an alternative method of predicting flood impacts to 

enhance flood resilience strategies and mitigate future flood impacts across the United States. 

Literature Review 

The increase in severe flooding is exacerbated by rapid urban development in flood-prone areas. 

Urban expansion, infrastructure growth, and economic activities in vulnerable regions heighten 

the risk and impact of flood-related damage (Park et al., 2021). While conventional flood 

inundation mapping and flood risk assessments focus on flood depth and extent, there is 

growing recognition of the need for methodologies assessing flood-related losses or impacts 

(Elmer et al., 2010). Evaluating the efficacy of mitigation measures necessitates a holistic 

understanding of both physical and non-physical factors influencing damage to floodplain 

elements (Scorzini & Frank, 2017). 

Preliminary damage assessments are initial assessments of damage after an emergency event done 

at the local and state level to assist the Federal Emergency Management Agency (FEMA) and 

the federal government in determining damage and allocating resources during emergency 

response (FEMA, 2021).  Assessing building damage, such as through preliminary damage 

assessments, is critically important for several reasons. Buildings are central to the functionality 

and stability of communities, serving as homes, businesses, and infrastructure. Additionally, 

understanding building damage helps identify vulnerable areas and structures, guiding future 

urban planning, infrastructure improvements, and flood risk mitigation strategies. By focusing 

on building damage, communities can enhance their resilience to floods, minimize losses, and 
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improve recovery outcomes after such natural disasters (Urban Floods Community of Practice, 

2017). 

ML has been increasingly recognized as a high-power tool for handling large spatial datasets and 

for its improved predictive capabilities for natural hazards compared to other methods 

(Nachappa et al., 2020, Mosavi et al., 2018). Tree-based ML algorithms, such as eXtreme 

Gradient Boosting (XGB), demonstrate significant potential in improving the accuracy of flood 

risk predictions. XGB has been used widely for assessing pluvial flooding risk and extent in a 

wide variety of contexts (Wang et al., 2023, Liu et al., 2022, Ghosh et al., 2022, Ren et al., 2024). 

XGB has also been used in conjunction with non-traditional flood data, such as Waze alerts, to 

predict flash flooding susceptibility (Safaei-Moghadam et al., 2024) and to optimize urban 

configuration as a flood mitigation strategy (Yuan et al., 2024, Zhou et al., 2022).  

To our knowledge, our methodology is the first to propose the implementation of hydrological, 

topographic, socioeconomic, and insurance claims data as input variables for an XGBR 

algorithm to predict mean building damage cost (in USD) on a zip code scale. Current literature 

underscores the importance of considering the social dimension of natural disaster occurrence 

and mitigation, and the predictive efficacy of XGBR algorithms (Blessing et al., 2017, Flanagan 

et al., 2017, Ren et al., 2024) . Therefore, we aim to demonstrate how publicly available insurance 

claims data can be used to predict building damage, which can be used as a robust proxy to 

predict flood risk and exposure.  

Methodology 

Data Collection 

The Federal Insurance and Mitigation Administration (FIMA) National Flood Insurance 

Program (NFIP) Redacted Claims version 2 dataset is provided by the (FEMA) to help reduce 

future flood losses through flood hazard identification, floodplain management, and the 

provision of insurance protection. This dataset contains over 2.6 million records of claims made 

under the NFIP, removing identifying information to protect privacy and covering the 

contiguous United States (CONUS). This dataset includes the assessed building damage dollar 

amount for a property, and damage is classified as tangible and direct, resulting from the 

building's response to flood hazard factors such as flood depth (Merz et al., 2010, de Moel et al., 

2015). As NFIP data includes corresponding zip codes for each claim, using a zip code scale 

represents a convenient and representative scale for our project. We calculated the mean damage 

amount for buildings within each zip code (Fig S1), which served as our target variable. Our 

model's independent (predictive) variables are categorized into the following four main classes, 

discussed below. 

Insurance-Derived Characteristics 

The NFIP Redacted Claims version 2 dataset includes various characteristics related to insured 

buildings and the recorded flood situations for which insurance claims were filed. This dataset 

contains three types of data: binary (e.g., whether the building is elevated or not), categorical 

(e.g., different categories for the number of building stories/floors), and continuous values (e.g., 

building price value). To manage dataset variation, we calculated the percentage for binary and 

categorical variables within each zip code, while averaging the continuous value over zip code 

(Fig S1). 

https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2
https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2
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Terrain and Land Cover Characteristics 

Terrain characteristics were calculated directly from 10-meter resolution digital elevation models 

(DEMs) from the USGS 3D Elevation Program (3DEP). These include surface slope, distance 

to the nearest water body, topographic wetness index (TWI), Soil Drainage Index (SDI), and 

Stream Power Index (SPI). These parameters were chosen based on previous studies identifying 

them as key factors impacting flooding (Meraj et al., 2015; Dey et al. 2024). TWI represents soil 

wetness based on topography (Kirkby, 1975), SDI reflects long-term soil wetness and soil 

drainage capacity (Hole and Campbell, 1986; Schaetzl, 1986), and SPI measures the erosive 

power of flowing water (Bagnold, 1966). Land cover characteristics were derived from the 

National Land Cover Database 2016 (NLCD 2016). Previous studies by Amini et al. (2011), Fox 

et al. (2012), and Zope et al. (2016) have examined the impact of LULC changes on flooding, 

demonstrating how increased urbanization can promote flooding conditions. The dataset was 

categorized into agriculture, developed, forest, water, and other categories. The percentage area 

covered by each category relative to the total zip code area was calculated for each zip code (Fig 

S1). 

Hydro-Climatic Characteristics 

The hydro-climatic characteristic of interest in this study was precipitation, chosen for its primary 

influence on pluvial flooding and its significant spatial and temporal variability. Data was sourced 

from the North American Land Data Assimilation System (NLDAS) dataset, known for its high-

resolution 1/8th-degree grid spacing and continuous coverage since 1979. The dataset provides 

hourly total precipitation data in kg/m², recognized for its precision in hydrological applications. 

Historical data for Hurricane Harvey spanning August 24 to September 19, 2017, was extracted 

and subsequent analysis included deriving mean and maximum values for accumulated 

precipitation over 1-, 3-, 5-, and 7-day periods, as well as for the entire event duration (Fig S1). 

Socioeconomic Characteristics 

The Social Vulnerability Index (SoVI) identifies flood-prone communities based on 

socioeconomic factors, aiding in prioritizing resources for flood mitigation and response efforts 

(Cutter et al., 2003). In this study, the Social Vulnerability Index (SoVI) is constructed following 

the algorithm proposed by Cutter et al. (2003). Key variables representing social vulnerability—

such as population, housing, age, gender, wealth, race, language barriers, transportation, 

education, and disability—were extracted from the 2017 American Community Survey (ACS) 

five-year estimates available from the US Census Bureau at the zip code level (refer to Table S1). 

A Kaiser–Meyer–Olkin (KMO) test was then employed to assess the data's suitability for 

Principal Component Analysis (PCA), a statistical technique used to simplify and reduce the 

dimensionality of large datasets while preserving essential information (Abson et al., 2012). The 

data were normalized using Z-scores before Principal Component Analysis (PCA) was 

performed. PCA for each component of the SoVI was performed using IBM SPSS Statistics 

software version 29.0.2.0. The contribution of each component was assessed based on the 

proportion of variance explained by the selected components (for further details, see Dey et al., 

2023). Equation 1 represents the obtained SoVI equation, and Table S2 summarizes the social 

vulnerability component summary. Using Equation 1, the SoVI is calculated for each zip code 

(Fig S1). 

https://apps.nationalmap.gov/downloader/
https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover&f%5B1%5D=category%3Aurban%20imperviousness&f%5B2%5D=region%3Aconus&f%5B3%5D=category%3Aland%20cover&f%5B4%5D=category%3Aurban%20imperviousness&f%5B5%5D=region%3Aconus
https://ldas.gsfc.nasa.gov/nldas/nldas-get-data
https://data.census.gov/cedsci
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𝑆𝑜𝑉𝐼 =  0.541𝐹1 + 0.193𝐹2 − 0.151𝐹3 + 0.115𝐹4 (1) 

Where F₁, F₂, F₃, and F₄ are the components calculated through PCA. 

Data Preprocessing 

After gathering and extracting the specified characteristics, they were merged using the zip code 

number as a common identifier across all provided datasets, resulting in an input dataset with 

554 data points. Data points related to zip codes with no reported building damage or those with 

misreported information were removed. Additionally, zip codes that were sparsely distributed 

(see Fig 1) or considered spatial outliers were excluded. Errors in recorded water depth from the 

NFIP Redacted Claim version 2 were identified, and the related data points were excluded. Data 

points with NAN values in any features were also removed. After this preprocessing, the dataset 

was reduced to 368 data points (see Table S3 for dataset description, units of measurement, and 

statistical summary; Fig S2 shows the correlation matrix between attributes). The input dataset 

was then split into training and testing sets in a 75:25% ratio, resulting in 276 training points and 

92 testing points. Fig 1 illustrates the spatial distribution of the training and testing datasets. 

 
Fig 1. Spatial distribution of the training and testing datasets. 

Model Development 

XGB Regression (XGBR) models were developed using the input dataset. XGBR, a supervised 

algorithm within the gradient boosting framework, is known for its robustness, noise resistance, 

and high prediction accuracy (Ren et al., 2024; Liu et al., 2022). It iteratively improves predictions 

based on previous errors, offering increased speed and accuracy with the ability to handle 

correlated features while mitigating model complexity and overfitting (Zhou et al., 2022; Yuan 

et al., 2024). 

Using this algorithm, feature importance analysis based on a decrease in impurity was conducted 

to identify the most significant features. This analysis evaluates each feature's contribution to 

reducing error and increasing accuracy. The model was then validated against the testing dataset 

using performance metrics such as coefficient of determination (R²), Percent Bias (PBias), and 

Root Mean Square Error (RMSE). The process of fine-tuning XGBR hyperparameters 

continued until a satisfactory level of accuracy was achieved. 
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Results and Discussion 

The XGBR model demonstrated strong performance on the training dataset, achieving a high 

R² value of 0.998, indicating an excellent fit to the data (Table 1). On the testing dataset, the 

model maintained good predictive capability with an R² value of 0.742. Both the training 

(0.092%) and testing (1.586%) datasets exhibited minimal Percent Bias (PBias), suggesting low 

bias in predictions. However, there was a notable difference in Root Mean Square Error (RMSE) 

between the training set ($2575.042) and the testing set ($21037.271), indicating variance in 

prediction accuracy across datasets. 

Table 1. Performance metrics of the developed model using eXtreme Gradient Boosting Regression 

(XGBR) algorithms on the test dataset to estimate mean building damage amount ($). 

Performance Metric Training Testing 

R² 0.998 0.742 

PBias (%) 0.092 1.586 

RMSE ($) 2575.042 21037.271 

The violin plots of both datasets show that the model's predictions closely align with the 

distribution of the data in terms of median, 25th, and 75th percentiles (Fig 2). However, the 

model exhibits less accuracy in predicting minimum and maximum values. Scatter plots for both 

datasets indicate a generally good fit across the data range, although there is a tendency to 

overestimate at lower values. This discrepancy may be due to the limited number of data points 

at the extremes, potentially hindering the model's ability to fully capture trends and patterns in 

those regions. 

  

Fig 2. Scatter and violin plots of observations against predictions obtained by the developed model using 

the eXtreme Gradient Boosting Regression (XGBR) algorithm on the test dataset to estimate the mean 

building damage amount ($). 

Feature importance analysis was performed through the mean decrease in impurity (MDI) (Fig 

3). Recorded water depth in buildings, contributing about 22% to the model's predictive power, 

highlights its crucial role in determining flood damage. This aligns with depth-damage functions 

(Pistrika et al., 2014b), which quantitatively relate flood water depth to structural or asset damage. 
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The value of the building price is closely followed, accounting for nearly 16% of the feature 

importance. This suggests that insurance coverage for more expensive houses may be more 

comprehensive due to higher repair expenses and more valuable contents, potentially resulting 

in higher assessed damages. Also, individuals with more expensive houses may possess a better 

understanding of "good" insurance, ensuring they are adequately covered. They are also more 

likely to afford insurance compared to those of lower socioeconomic status. Additionally, the 

percentage of buildings with 2 floors/stories, the third most important factor, showed significant 

importance, contributing approximately 12%. This highlights the vulnerability of multi-story 

buildings to flood damage, where each additional floor increases exposure to potential flooding 

impacts. 

 

Fig 3.  Results of the Mean Decrease in Impurity (MDI) analyses were obtained by applying the developed model 

using the eXtreme Gradient Boosting Regression (XGBR) algorithm on the test dataset to estimate the mean 

building damage amount ($). (Check Table S3 for attribute description) 

Future Works 

As mentioned, the model has limitations in capturing the distribution at both the minimum and 

maximum ends. This issue arises from the need for more data points in these ranges for training 

the model. Future work could expand the model spatially and temporally by considering more 

events, thereby providing a more comprehensive dataset for model development. Exploring 

other machine learning algorithms, such as Support Vector Regression (SVR) and Multi-Layer 

Perceptron (MLP), could help develop models that better capture the extremes. These models 

could also be ensembled with the current XGBR model to characterize model structural 

uncertainty and enhance overall prediction accuracy. 

Due to limitations in the NFIP Claim Redacted version 2 dataset, the model was developed on 

a zip code scale. However, this broader scale might result in inaccurate damage predictions by 

neglecting variations within incorporating codes. More precise data could enhance the model's 

precision assessments of flood risk and structural damage. To overcome these constraints and 

improve the credibility of flood risk predictions, future efforts should concentrate on integrating 

data with higher resolutions. 
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 Although the model demonstrates good accuracy, its applicability is limited by its reliance on 

data derived from the NFIP Claim Redacted version 2, which only includes zip codes with filed 

insurance claims, leaving many zip codes unrepresented. Future work could focus on developing 

models that do not rely on the NFIP dataset or replacing it with other similar and accessible 

features. This approach could expand the model's applicability to a broader range of zip codes. 

The developed model can be applied to other flood events and independently evaluated to 

ensure its robustness as a predictive tool for future occurrences. Its reliability can be 

quantitatively assessed by comparing its outcomes with Federal Emergency Management Agency 

(FEMA) 500—and 1,000-year flood maps and high-water marks.  

Conclusion 

This study aimed to develop predictive models for estimating building damage caused by 

Hurricane Harvey at a zip code scale, utilizing XGB Regression (XGBR) and integrating 

insurance-derived, socioeconomic, terrain-land cover, and hydro-climate characteristics. Key 

findings emphasized the significant influence of recorded water depth, building price value, and 

the percentage of buildings with 2 floors/stories on damage prediction, highlighting their direct 

correlation with flood hazard, exposure, and vulnerability. 

XGBR emerged as a robust algorithm due to its high predictive accuracy, ability to handle non-

linear relationships, and minimal dependency on extensive data preprocessing. However, the 

model's applicability is limited by its reliance on NFIP dataset features, restricting coverage to 

zip codes with available insurance claims data. Future research directions should focus on 

enhancing model generalizability by incorporating alternative datasets and methodologies. This 

approach aims to extend the model's utility across diverse geographic regions and various flood 

events, supporting more comprehensive flood risk assessments and enabling targeted mitigation 

strategies to bolster community resilience against natural disasters. 
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Supplementary Materials 

Codes and script are available at  https://github.com/Reizrb/SI2024  

Table S1. Description of attributes considered to assess social vulnerability 

Attribute Description 

POP_65_P Percentage of population over 65 years old (%) 

POP_5_P Percentage of population under 5 years old (%) 

Fem_POP_P Percentage of total female population (%) 

Med_Hou_inc Median households’ income (%) 

https://geography.ua.edu/people/wanyun-shao/
https://github.com/Reizrb/SI2024
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Attribute Description 

Hou_no_Veh Number of households with no available vehicle 

POP_no_SC Percentage of population with no schooling completed (%) 

DisAble Number of disabled populations 

Hisp_P Percentage of Hispanic households (%) 

White_P Percentage of White households (%) 

Spe_lv_P Percentage of people with speak English less than very well 

POP_Den Population density (person/sqkm) 

Housing_Den Housing density (household/sqkm) 

  

Table S2. Social vulnerability component summary 

Factor Cardinality Name Variance 

explained 

(%) 

Dominant 

variables 

Factor 

loading 

F1 + Race and 

Language 

Barrier 

40.636 Hisp_P 0.868 

White_P -0.804 

Spe_lv_P 0.846 

F2 + Population 

and 

Housing 

14.533 POP_Den 0.896 

Housing_Den 0.936 

F3 - Wealth 11.324 Med_Hou_inc 0.798 

F4 + Gender 8.640 Fem_POP_P 0.839 

Table S3. Dataset description, units of measurement, and some descriptive statistics summary. The attributes 

indicated by * are those involved in the final best-developed model. 

 Attribute Description Mean Min Max StdDev 

* mean_BDA Mean Building Damage Amount ($) 6293

8.96 

767

.00 

2364

69.2

1 

44019.

45 
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 Attribute Description Mean Min Max StdDev 

* mean_BPV Mean Building Price Value ($) 4894

55.9

5 

637

8.0

0 

2895

6518

.04 

176299

5.20 

* mean_WD Mean Recorded Water Depth (cm) 5.65 0.0

0 

41.5

5 

4.90 

 Agr_stru_P Percentage of Agricultural Buildings 

(%) 

0.05 0.0

0 

7.69 0.48 

 Wor_Hou_P Percentage of Worship Houses (%) 0.79 0.0

0 

33.3

3 

2.84 

 NP_buil_P Percentage of Non-Profit Buildings 

(%) 

0.42 0.0

0 

14.2

9 

1.46 

* SBu_build_ Percentage of Small Businesses (%) 1.77 0.0

0 

100.

00 

6.37 

* Pri_Res_P Percentage of Buildings with Primary 

Residency (%) 

78.46 0.00 100.0

0 

17.91 

* Thr_M_FL_P Percentage of Buildings with 3 or 

more Floors (%) 

3.15 0.00 100.0

0 

10.47 

 St_Own_P Percentage of State-Owned Buildings 

(%) 

0.02 0.00 2.08 0.13 

* Ele_buil_P Percentage of Elevated Buildings (%) 17.83 0.00 100.0

0 

23.42 

* w_base_P Percentage of Buildings with 

Basement (%) 

61.31 0.00 100.0

0 

19.91 

* One_FL_P Percentage of Buildings with One 

Floor (%) 

65.05 0.00 100.0

0 

26.26 

* Two_FL_P Percentage of Buildings with Two 

Floors (%) 

25.75 0.00 100.0

0 

21.98 

 Res_buil_P Percentage of Residential Buildings 

(%) 

92.63 0.00 100.0

0 

12.62 

 PCT_Agr Percentage of Agricultural Land 

Cover (%) 

20.21 0.00 86.72 25.21 
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 Attribute Description Mean Min Max StdDev 

* PCT_Dvl Percentage of Developed Land Cover 

(%) 

47.66 1.91 100.0

0 

37.11 

* PCT_Frs Percentage of Forest Land Cover (%) 12.05 0.00 60.39 15.81 

* PCT_Wtr Percentage of Water Land Cover (%) 3.17 0.00 41.59 5.73 

 PCT_Othr Percentage of Others Land Cover (%) 16.91 0.00 76.93 15.94 

 mean_acc1 1-day Mean Accumulated 

Precipitation (kg/sqkm) 

27.96 2.12 42.99 10.43 

 max_acc1 1-day Max Accumulated Precipitation 

(kg/sqkm) 

254.9

3 

23.0

5 

396.2

2 

104.14 

 mean_acc3 3-day Mean Accumulated 

Precipitation (kg/sqkm) 

90.71 5.88 140.5

2 

34.91 

 max_acc3 3-day Max Accumulated Precipitation 

(kg/sqkm) 

507.8

9 

42.2

8 

729.5

2 

192.09 

 mean_acc5 5-day Mean Accumulated 

Precipitation (kg/sqkm) 

143.0

9 

6.71 242.0

8 

58.65 

 max_acc5 5-day Max Accumulated Precipitation 

(kg/sqkm) 

605.4

3 

42.9

7 

921.5

0 

229.47 

 mean_acc7 7-day Mean Accumulated 

Precipitation (kg/sqkm) 

171.5

9 

7.62 320.7

3 

73.46 

* max_acc7 7-day Max Accumulated Precipitation 

(kg/sqkm) 

612.2

2 

43.2

3 

944.1

5 

229.66 

 mean_pcp Mean Precipitation during Event 

(kg/sqkm) 

1.22 0.09 1.87 0.45 

 tot_pcp Total Precipitation during Event 

(kg/sqkm) 

615.0

4 

46.7

1 

945.8

0 

229.48 

 max_pcp Max Precipitation during Event 

(kg/sqkm) 

32.73 2.90 66.63 14.86 
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 Attribute Description Mean Min Max StdDev 

 non_zero_hou

rs 

During of the Event where 

Precipitation is not Zero (hrs) 

148.5

7 

87.0

0 

204.0

0 

26.17 

* average_non_

zero 

Mean Precipitation during 

non_zero_hours (kg/sqkm) 

4.18 0.36 6.30 1.51 

* Mean_Slope Mean Slope (Degree) 1.05 0.13 7.37 0.72 

 Max_Slope Max Slope (Degree) 24.44 10.1

1 

64.40 7.59 

* Mean_TWI Mean Topographic Wetness Index 3.46 2.16 6.64 0.80 

 NEAR_DIST Distance Between Zip Code Centroid 

and Nearest Stream River (m) 

1142.

99 

1.70 13099

.22 

1245.84 

* Mean_SPI Mean Stream Power Index -5.86 -

7.78 

-2.70 0.89 

 Mean_SDI Mean Soil Drainage Index 28.95 0.00 62.05 9.71 

* svi Social Vulnerability Index 0.05 -

1.33 

2.34 0.63 
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 Figure S3. Spatial distribution maps of input dataset 
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Figure S2. Correlation matrix between variables (Check Table S3 for variable description) 
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Appendix  
Team Leaders 

 Assimilation of Geosynchronous satellite imagery Into NextGen For 

improved modeling 

 

“I am currently affiliated with University of 

Alabama. I have a PhD at the University of 

Alabama. I hold a Master of Science from the 

University of California, Irvine, and a Bachelor of 

Science from California State University, Monterey 

Bay. My research interests lie in large-scale 

hydro/hydro-dynamic modeling and machine 

learning physical process representations. 

Originally from California, I feel equally at home in 

Alabama. My favorite hobby is skateboarding, 

though I have paused it to train for endurance 

events. I also enjoy chess, jazz, and philosophy.” 

Jonathan Frame 
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Developing applications that effectively characterize the uncertainty in 

Flood Inundation Mapping (FIM) 
 

 

 

“I am a Professor at the University of Alabama, 

with a Ph.D. from the University of Newcastle, 

Australia. My research interests focus on flood 

inundation mapping, flood remote sensing and 

analysis, and global and continental riverine 

modeling. This marks my seventh involvement in 

the Summer Institute, with eight of my graduate 

students participating to date and nine journal 

papers published stemming from this 

collaboration. In my free time, I enjoy sailing, 

kayaking, hiking, and traveling.” 

 

Sagy Cohen  

 

Xingong Li 

 

 

 

“I am a Professor at the University of Kansas, 

holding a Ph.D. from the University of South 

Carolina. My research interests include flood 

inundation mapping, surface water mapping, 

and the Map Compute framework. Born and 

raised in western China, I have been a 

dedicated member of the University of 

Kansas for over 20 years. In my free time, I 

enjoy running and hiking. Additionally, I am 

deeply fascinated by the origins of life and the 

role that information plays in its 

development.” 
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Geospatial Data Integration to Identify High-flow Thresholds for 

Improved Flood Risk Characterization 
 

“I work for the Flood Solutions Lead at 

FloodMapp, based in Boulder, CO. I completed a 

Fulbright Postdoc at the University of Newcastle 

in Australia and another postdoc at the University 

of Bayreuth in Germany. I hold a Ph.D. and an 

M.S. from Kansas State University and a B.S. from 

North Carolina State University. My research 

interests include flood inundation mapping, flood 

early warning and operational forecasting, 

ecosystem services, and applied research. I grew 

up in Rhode Island and have lived in four 

countries. In my free time, I love hiking, 

gardening, and traveling. I share my life with two 

dogs, Winston and Oliver.” 

 

Kelsey Mcdonough  

 
 

Sanjib Sharma 

 

 

 

“I am an Assistant Professor at Howard 

University, holding a Ph.D. from Pennsylvania 

State University. My research interests encompass 

hydrometeorological forecasting, machine 

learning, uncertainty quantification, and risk and 

decision analysis. With a background in 

engineering, I have experience in both consulting 

and academia. In my free time, I enjoy playing 

soccer, hiking, and swimming.” 
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Summer Institute Course Coordinators 

 
From left to right: Sadaf Mahmoudi, and Karina Larco. 
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Summer Institute Teams 
Chapter 1: Leveraging Geosynchronous Satellite Imagery and Machine 

Learning to Predict the Magnitude and Extent of Snow Water Equivalent 

 
Group SWE Home Alabama 

From left to right: Raymond Hess, Helaleh Khoshkam, Hassan Saleh, and Savalan Naser Neisary. 

 

Chapter 2: Identifying Atmospheric Rivers on the West Coast of the United 

States with Geostationary Operational Environmental Satellite Imagery 

 
Group AetheR 

From left to right: Janani Kandasamy, Surabhi Upadhyay, Meklit Berihun Melesse, and Anshul Yadav. 
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Chapter 3: Probabilistic Streamflow Prediction Using the Model-Agnostic 

NextGen Framework  

 

 
Group ProNextGen 

From left to right: Ali Sattari, Reza Morovati and Hossein Gholizadeh 

Chapter 4: Enhancing Remote Sensing Flood Inundation Mapping by 

Leveraging a Terrain-Based Model  

 
Group FLDSensing 

From left to right: Francisco Gomez, Jack Edwards, and Kim Son Do 
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Chapter 5: Flood Inundation Mapping Using Terrain-Based Models for 

Flash Floods due to Dam Operations  

 
Group SHARP_ FIM 

From left to right: Ayman Mokhtar Nemnem, Reza Saleh Alipour, Parvaneh Nikrou and Shivakumar 
Balachandaran 

 
Chapter 6: Transition From Hazard to Impact-based Riverine Flood 

Forecasting  

 
Group Flood Fighters 

From left to right: Duc Tran, Hesham Elhaddad, and Lyn Watts 
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Chapter 7: Leveraging Geospatial Data and Machine 

Learning to Predict Insurance-derived Flood Damage Cost 

 
Group hydroHERoes 

From left to right: Aylar Samadi, Reihaneh Zarrabi, and Corrine Liu  

 

 

 

 

 

 

 

 

 

 

 

 


