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Preface 
 

The National Water Center Innovators Program: Summer Institute (NWC-SI) was first 
organized in 2015 by the National Water Center and Consortium of Universities for the 
Advancement of Hydrologic Science Inc. (CUAHSI). CUAHSI, a nonprofit organization of 
more than 130 member institutions, provides programs and services for advancing 
interdisciplinary water science. The National Water Center (NWC) is a National Oceanic and 
Atmospheric Administration (NOAA) facility that enables cooperation across federal agencies 
to deliver a new generation of water information and services to the nation. This partnership has 
allowed the NWC-SI to facilitate collaboration and ideation across disciplines and backgrounds, 
equipping existing and future scientists to create sustainable solutions with others, and for others. 
 
 

Throughout the NWC-SI, graduate students (fellows) and senior academic faculty and federal 
scientists (theme leaders) have participated alongside NWC staff and other senior scientists to 
create and complete scientific projects geared toward improving U.S. water resources modeling, 
science, and services. Included in these is the National Water Model (NWM), a tool that more 
efficiently provides guidance for water resources related risks, which became operational in 
August 2016.  NWC-SI projects have revolved around scientific and modeling challenges, 
prioritized by the NWC and categorized by ’themes’. Themes for NWC-SI 2019 were: ‘Scaling 
of Hydrologic Processes’; ‘Hydroinformatics’, and ‘Coupled Inland-Coastal Hydraulics’. During 
the first week of NWC-SI 2019, fellows were introduced to the themes, the NWC mission, and 
the NWC’s current operational priorities for the NWM. Fellows and theme leaders participated 
in team formation activities, project brainstorming sessions, and data and project management 
training that included a multi-day, interactive introduction to GitHub, Jupyter, and Docker. 
These tools and training laid the foundation for team and project formation. Commencing the 
second week, fellows selected the themes around which they would frame their projects. Theme 
leaders provided theme-specific training that enabled fellows to develop the projects they 
worked on for the remaining five weeks. The following chapters provide an overview of NWC-
SI 2019 participants and their projects. 
 

Fellows 
The 5th NWC-SI Fellows class consisted of 18 graduate students, three M.S. students, and 15 
PhD candidates from 16 universities across the U.S. This cohort represented various academic 
backgrounds that included: civil, biological and environmental engineering; geography; 
environmental resource and policy; oceanography; coastal and marine science; computer science, 
and informatics. The diversity of fellows and perspectives is an integral and celebrated aspect of 
the NWC-SI. 
 
 

Themes and Theme Leaders 
The NWC-SI 2019 themes and theme leaders were: 

• The ‘Coupled Inland-Coastal Hydraulics’ theme, led by Celso Ferriera of George Mason 
University. Additional technical support was provided by Patrick Burke of National 
Ocean Service and Roham Bakhtyar of the NWC. 

• The ‘Scaling of Hydrologic Processes’ theme led by Fred Ogden of University 
Corporation for Atmospheric Research (UCAR)/National Water Center, and Hilary 
McMillan of San Diego State University. 

• The ‘Hydroinformatics’ theme, led by David Blodgett of the United States Geological 
Survey (USGS) and Kyle Mandli of Columbia University. Additional technical support 
was provided by Nels Frazier of the National Water Center (NWC). 
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Project Summaries 
The following provides a brief 2019 NWC-SI projects summary, presented in more detail in 
Chapters 1-6 of this report. 
 
1. Projects Related to the ‘Coupled Inland-Coastal Hydraulics’ Theme 
The project ‘Influence of Forcing Conditions on Total Water Level Prediction in Delaware Bay, 
USA’ analyzed the influence of dynamical forcing conditions (e.g., wind, waves, currents and 
river discharge) on total water level prediction, to understand spatial and temporal variations of 
total water level within the inland-coastal transition zone. Delft3D-FM and HEC-RAS, using 
different combinations of systematically varied input forcing conditions, were applied to model 
total water level in Delaware Bay during storm-surges produced by Hurricanes Isabel and Sandy. 
The project ‘Model-Based Parametric Analysis of Total Water Prediction in Coastal Transition 
Zones of the US East and Gulf Coasts’ investigated input model parameter contributions on 
output variability and possible parameter interactions, to provide insight for improved 
operational model calibration in coastal transition zones. A variety of idealized coastal zone 
domain geometries and physical input parameters were used to produce model output on which 
to perform targeted parametric and performance analyses. These two projects are described in 
Chapters 1 and 2, respectively. 
 
2. Projects Related to the ‘Scaling of Hydrologic Processes’ Theme 
The project ‘Experimental One-Way Coupling of TOPMODEL with NWM to Substitute 
Runoff Processes Delineation in A Headwater Catchment’ explored the potential to achieve a 
balance between computational efficiency and fidelity in hydrologic modeling, by integrating a 
simple topography-based hydrological model component into nationwide hydrologic modeling. 
NWM v1.2 and NWM’s LSM+TOPMODEL coupled version were used to model runoff 
generation in a headwater catchment, and their respective performances were evaluated and 
compared. The project ‘A Study on Parsimonious Models in Catchments Generating Saturation 
Excess Run-Off” introduced a parsimonious rainfall-runoff model built on the assumptions of 
TOPMODEL, to provide insight on the role of saturation excess on runoff generation and to 
suggest areas where NWC can apply the model. Our model uses higher resolution topography 
and simple subsurface flow equations in a computationally efficient fashion to model overland 
flow. These two projects are described in more detail in Chapters 3 and 4, respectively. 
 
3. Projects Related to the ‘Hydroinformatics’ Theme 
Similar to the other two themes of 2019 NWC-SI, the hydroinformatic theme involved two 
projects. The project ‘National Water Model Dockerized Job Scheduler: A Reproducible 
Framework to Generate Parameter-Based NWM Ensemble’ focused on developing a 
generalized framework to efficiently generate performance-based NWM ensemble outputs. The 
framework used a pseudo-random Latin hypercube approach to scale channel parameters, 
utilized Docker to deploy and manage asynchronous NWM containers, and created a weighted 
average ensemble output based on a rank system. The project ‘A Visualization Workflow for 
Quantifying Parameter Sensitivities to Uncertainties for Hydrologic Models’ developed a 
reproducible workflow for evaluating parameter sensitivities and uncertainties, using the 
hydrologic modeling framework of the NOAA National Water Model. The workflow evaluated 
model output as a function of parameter choice, using both numerical and visualization 
techniques. Four case studies, generated from data provided by graduate student researchers at 
the 2019 NWC SI, demonstrate the workflow implementation. These two projects are described 
in more detail in Chapters 5 and 6, respectively. 
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Chapter 1 
 

Influence of Forcing Conditions on Total Water 
Level Prediction in Delaware Bay, USA 
David F. Muñoz1, Dongxiao Yin2, and Jiannan Tian3 

1Department of Civil and Environmental Engineering, The University of Alabama; 
dfmunoz1@crimson.ua.edu  
2Department of Oceanography and Coastal Sciences, Louisiana State University; dyin2@lsu.edu  
3Department of Computer Science, The University of Alabama; jtian10@crimson.ua.edu 

Summer Institute Theme Advisor: Celso Ferreira, George Mason University, cferrei3@gmu.edu  

Academic Advisors: Hamed Moftakhari, The University of Alabama; Zuo George Xue, Louisiana State 
University; Dingwen Tao, The University of Alabama 

Abstract: Accurate forecasts of total water level (i.e., a combination of tides, surge, wave and 
freshwater components) are of vital importance to stakeholders and federal agencies that need 
to rapidly adopt strategies for potential flooding hazards. In this study, we analyze the influence 
of dynamical forcing conditions, wind, surge and river discharge, on total water level (TWL) 
prediction in Delaware Bay, USA. A systematic set of scenarios was generated in Delft3D-FM 
to quantify each component’s contribution to modeled TWL for Hurricane Isabel (2003) and 
Hurricane Sandy (2012). In both hurricanes, storm surge-induced water level was the main 
contributor to TWL, followed by astronomical tide. Riverine discharge induced-water level is 
small compared to the other components. Analyses of TWL spatial variation and the temporal 
variation of prediction error suggest wind forcing plays a key role in TWL prediction, followed 
by river discharge. Inter-model comparison of Delft3D-FM and HEC-RAS was conducted to 
provide insight regarding the importance of model capabilities when modeling storm surges. 
Our results suggest the wind module of Delft3D-FM greatly improves TWL prediction, 
particularly at TWL peak. However, 2D HEC-RAS is a simpler alternative for modeling storm 
surge events when wind forcing is not relevant in the model domain. 

 

1. Motivation 

It is estimated that by 2050, 25% of the world’s population will live in flood-prone areas [1]. In 
the United States, over half the population is settled in coastal regions [2], and 23 of the 25 most 
densely populated counties are located on the coast [3]. The North-Atlantic coasts are 
particularly vulnerable to coastal flooding caused by extreme sea levels during the Atlantic 
hurricane season [4, 5].   The National Water Center (NWC) has been providing water forecast 
services since 2017 in partnership with several federal agencies. Coupling the National Water 
Model (NWM) with appropriate ocean models is important in order to forecast compound 
flooding from storm surge and upland runoff. The complex interaction of dynamical forcing, 
among other factors (anthropogenic activities, land cover change, etc.), in Coastal Transition 
Zones (CTZs) impedes the NWM’s ability to provide accurate Total Water Level (TWL) 
forecasts as compared to inland areas. A previous study of the Delaware River Basin explored 
the benefits of model coupling (i.e., 1D/2D Delft3D-FMand 1D HEC-RAS) on TWL forecasts 
in CTZs [6], however, the contribution of tides, river discharge and TWL surge and its spatial 
and temporal variation in the model domain, have not been analyzed. This study is based on the 
work of Maitaria et al., [7] with the 2D mesh and model inputs formerly used to simulate storm-
surge events.   

mailto:jtian10@crimson.ua.edu
mailto:cferrei3@gmu.edu
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2. Objectives and Scope  

2.1 Objectives 

This study aimed to: 1) Investigate relevant forcing conditions influencing TWL prediction in 
the Delaware CTZ and 2) Evaluate the accuracy of TWL, simulated with two hydrodynamic 
models. For this purpose, a systematic set of scenarios was modeled in Delft3D-FM. TWL 
prediction accuracy was also evaluated through an inter-model comparison of both 1D and 2D 
HEC-RAS models and the Delft3D-FM model. 

2.2 Study Area 

Delaware Bay is on the east coast of the U.S., with a drainage basin of 35,000 km2. The Delaware 
River and Schuylkill River contribute 58% and 15%, respectively, of freshwater discharge to the 
bay. During normal flow conditions, water motion in the bay is dominated by tidal currents. 
Data used in this study came from five stations managed by the National Oceanic and 
Atmospheric Administration (NOAA) and the United States Geological Survey (USGS) in the 
bay. The stations are in the CTZ (from the estuary mouth to the upstream part of the Delaware 
River), providing water level and meteorological records. Figure 1 and Table 1 show the five 
stations and their distance relative to Brandywine Shoal Light station.  

 

 

Figure 1. Location of Delaware Bay, USA. 
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Table 1. Selected stations,with location and distances from Brandywine Shoal Light, DE. 

 

3. Previous Studies 

The TWL in the coastal transition zone contains components induced by astronomical tides, 
storm surge, river discharge and waves. Numerous studies have used numerical methods to 
simulate TWL and evaluate the relative contribution of different components to it. By extending 
the 1D HEC-RAS model downstream, Mashriqui et al. [8] simulated water levels in tidal 
Potomac River with acceptable results. Serafin and Ruggiero [9] presented a simulation model 
to calculate various TWL components induced by waves, tides, and non-tidal residuals. Marsooli 
and Lin [10], by coupling ADCIRC with the SWAN model, studied storm surge water level 
components and surge-tide interaction along the U.S. East and Gulf Coasts during past tropical 
cyclones.  

Previous efforts on inland to coastal coupling in the CTZ have focused on the Delaware River 
Basin [7]. A systematic comparison of 1D and 1D/2D hydrodynamic modeling revealed 1D 
HEC-RAS fails to reliably predict TWL during wind-dominated storm-surges. The 1D/2D 
coupling in DFLOW-FM, however, led to improved performance in both riverine and estuarine 
domains, due mainly to its wind-forcing module. While several studies have focused on model 
response sensitivities of physical processes [11–13], the contribution of forcing components to 
TWL, and its spatial and temporal variation in extreme storm-surge events, needs to be further 
explored. Additionally, comparisons between the 2D HEC-RAS model, 1D HEC-RAS and 
1D/2D DFLOW-FM have not been conducted in Delaware Bay. In this study, relative 
contributions of storm surge, astronomical tide, and riverine discharge to TWL were studied for 
Hurricane Isabel and Hurricane Sandy. Finally, an inter-model comparison of HEC-RAS and 
Delft3D-FM aimed to add to findings of Maitaria et al. [7], in Delaware Bay. 

4. Methodology 

4.1. Model framework 

To evaluate the influence of wind, surge and river discharge on TWL prediction, a systematic set 
of scenarios was devised and modeled in Delft3D-FM. Eleven scenarios were derived from 
different combinations of forcing conditions and input data sources (e.g., climate and oceanic 
models). Scenarios g33 and g10/g14 will subsequently be referred to as ‘base model’ and 
‘reference model’, respectively (Table 2). 
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Table 2.  Selected scenarios for various analyses in the Coastal Transition Zone of Delaware Bay. 

 

4.2. Investigation of Relevant Forcing Conditions 

4.2.1 Individual Contribution of Forcing Conditions to Total Water Level 

A series of experiments was designed and conducted under the model framework described 
above, using the setup shown in Table 3. Experiments I1 and S1 calculated astronomical tide, 
while experiments I2 and S2 studied the influence of river discharge on water level. Under the 
assumption that surge-tide interaction is relatively small compared to the surge signal, 
experiments I3 and S3 quantified storm surge-induced water level variability when combined 
with experiments I2 and S2.  

An intensive test study revealed surface wind and atmospheric pressure field datasets from 
Hurricane Weather Research and Forecast (HWRF) produced better model performance for 
Hurricane Sandy, while the same variables, provided by Climate Forecast System Reanalysis 
(CFSR), produced better model performance for Hurricane Isabel.   

4.2.2 Spatial Variation of Total Water Level 

Two approaches were followed to analyze TWL spatial variation in terms of Root Mean Squared 
Error (RMSE), bias, correlation coefficient (R2), and model skill. The first approach compared 
the TWL simulated in Delft3D-FM with observations obtained from five main tidal/gauge 
stations in the study area (Table 1). The second approach compared TWL, simulated by a 
calibrated and validated Delft3D-FM model, to TWL simulated with scenarios g2, g9/g13 and 
g42/g46. The scenarios highlighted the influence of each forcing condition on TWL prediction 
(Table 2). This approach took advantage of TWL simulated over the entire model domain, 
enabling analysis at locations where observations were unavailable.  

 

 

 

 

 

Table 3.  Experiments setup for Hurricane Isabel and Hurricane Sandy 
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4.2.3 Temporal Variation of Total Water Level Error  

TWL temporal variation was analyzed regarding error in prediction (i.e., scenarios vs. reference 
model) at three instances: 1) high water level (HWL) before the peak, 2) peak water level, and 3) 
HWL after the peak. These instances were considered, to study both over- and underestimation 
patterns in TWL prediction over the entire model domain. Timing of high and peak water levels 
of Hurricane Isabel and Hurricane Sandy were obtained from observations measured at Ship 
John Shoal station, located in the middle of the CTZ (Figure 1).  

4.3 Computational Platform and Testbench 

4.3.1 Research Platform 

Conventional high-performance computing (HPC) employs parallelization to achieve speedups. 
Open Multi-Processing (OpenMP) [14]  and Message Passing Interface (MPI) from which Open 
MPI [15] is predominately used, dominate real-world use scenarios. In comparison, research-
oriented projects (e.g., our ongoing work) require heavy workloads utilizing GUI tools (i.e., 
Delft3D-FM GUI and HEC-RAS) to construct forcing conditions combinational models. Such 
workflows often go with back-and-forth customization and tweaking, which is distinct from 
operational HPC computations. 

We constructed all exploratory experiments on local machines equipped with 4-core processors 
and 8 to 16 Gigabyte RAM. A Delft3D-FM model typically runs 15 minutes, with 4 cores in use, 
and 70 minutes on the server. It has a single core (partitioning is not enabled by default) that is 
qualitatively proportional to both the core number and the processor frequency. It is important 
to note Delft3D-FM supports the aforementioned MPI and OpenMP, but otherwise requires 
partitioning on datasets such as 2D mesh. Alternatively, HEC-RAS runs on the GUI-based 
personal workstation, which is not parallelizable.  

4.3.2 Scalability and I/O Throttle 

From an operational computing perspective we are aware of distinctions between, and 
capabilities of, different platforms and their corresponding computational expenses related to 
runtime, disk space, and overhead when parallelizing. While still seeking to fully automate 
workflow and parallelize tasks, we found it manageable to reproduce all results with minor 
changes each time (e.g., simulation duration, different inputs). This will benefit 1) our current 
topic of exploring parameter sensitivity, and 2) future work of similar model setups. 
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The straightforward implementation is to parallelize tasks, known as ‘embarrassingly 
parallelized’, and it is operationally desirable to run multiple models without diving into the 
delicate partitioning of jobs. To alleviate the I/O throttle, rather than delicately schedule 
parallelized tasks we sought to perform in-memory compression and decompression, a newly 
emerging technology. To achieve equivalent high-throughput I/O we chose a state-of-the-art 
Lossy Compressor SZ [16], already used by many scientist communities to perform proof-of-
concept experiments. In the future, this methodology will be incorporated into our workflow, 
with potential modification of existing compute frameworks. Preliminary results are discussed 
in Section 5.3 

4.3.3 Inter-model comparison 

Maitaria et al. [7] previously analyzed TWL prediction accuracy in Delaware Bay based on 
1D/2D DFLOW-FM and 1D HEC-RAS models. To complement their findings, a 2D HEC-
RAS model was set up in this study with the same characteristics and model parameters (e.g., 
model domain, grid size, topo/bathymetry, roughness coefficients, etc.) of 1D/2D DFLOW-
FM.  

5. Results 

5.1. Investigation on Relevant Forcing Conditions 

5.1.1 Contribution of different components on Total Water Level 

This discussion is based on results generated in the experiments (see section 4.2.1); the 
astronomical tide (AT), river discharge-induced water level (RI) and storm surge-induced water 
level (SSWL). For Hurricane Isabel, the gap between observed TWL and simulated AT stayed 
within 0.5 m until an extreme water level event occurred around September 18-19, 2012 
expanding the difference by 1-2m (Figure 2, left). Compared to the AT, RI was always positive 
but small, which indicates Delaware Bay is a tidal current-dominated estuary during mean 
discharge conditions [17,18]. However, an abrupt increase in RI was found at September 24, 
corresponding to the sudden increase in river discharge erroneously simulated by the model. 
SSWL, described as water level variability induced by storm surge signal and surge-tide 
interaction, was represented by subtracting the water level simulated in I3 from that simulated 
in I2. SSWL variability was less than 0.6 m (smaller than the AT) during most of the simulation 
period before reaching peak around September 19, when a 1.5 m water level rise at Brandywine 
to 2.0 m at Newbold occurred, (mainly due to the funneling effect). Additionally, peak SSWL 
was higher than the observed TWL peak, indicating the storm surge did not coincide with the 
high tide water.  

Model results for Hurricane Sandy are shown in Figure 2 (right). Similarly, AT contributed most 
to observed TWL during normal conditions. After storm surge approached the study domain 
(around October 28), SSWL became the most important water level component. River discharge 
as revealed during Hurricane Isabel had minor influence on TWL near the mouth of the bay, 
but caused 0.1-0.5 m variability of water levels upstream. 
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Figure 2. (Top) Hurricane Isabel and (Bottom) Hurricane Sandy. Simulated water level components time series (RI: dash-dotted 
line, AT: dotted line, SSWL: black solid line) and observed TWL (blue solid lines) at selected NOAA tidal/gauge stations.(top to 

bottom) Brandywine, Ship John Shoal, Marcus Hook, Burlington, and Newbold. 

 

5.1.1a. Extreme water level condition 

To further analyze the composition of TWL, two extreme water level events--observed peak 
water level and peak SSWL--were selected and all components extracted. 

5.1.1b. Hurricane Isabel 

For all selected gauges SSWL contributed most to TWL, with 59.12% on average, followed by 
AT with a 20.66% average, and finally RI with only 3% (Table 4; Figure 3, left). Following the 
longitudinal direction from Brandywine to Marcus, both the value of peak TWL peak and SSWL 
increased, while AT decreased. River discharge did not show noticeable variation. This indicates 
the increase at peak TWL was mainly due to the increase of SSWL, which resulted from the 
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funneling effect. From Marcus to Newbold, however, TWL still increased, despite decreased 
SSWL due to loss of energy as it propagated upstream. The TWL increase can be partly attributed 
to the RI increase but, more importantly, was due to the relatively higher AT with which the 
SSWL coincided. An additional conclusion is that during the storm surge-induced extreme water 
level event, the river discharge influence was small, regardless of location. Given this, river 
discharge consideration in the water level simulations did not influence the results; especially at 
gauges located downstream. Table 4 (SSWL Peak) and Figure 3 (right) show the relative 
components of water level at the peak event of storm surge-induced water level. At all selected 
gauges, SSWL was larger than observed TWL by approximately 0.5 m. Negative values of the 
AT indicate the storm surge peak coincided with the relatively low AT levels, resulting in the 
lower observed TWL compared to SSWL. Again, although the RI showed an increasing trend 
from downstream to upstream, its contribution was rather small.  

 

Table 4. Water level components at selected gauge stations during peak event of non-SS (top) and SS- induced (bottom) water level 
for Hurricane Isabel (left) Sandy (right) respectively. 

 

 

 

  

Figure 3. Water level components at selected NOAA gauges during: (left) TWL peak event, (right) SSWL peak event for 
Hurricane Isabel. 
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5.1.1c. Hurricane Sandy 

During the TWL peak of Hurricane Sandy, SSWL contributed most to TWL with an average 
72.34%, followed by AT with 19.95%, and RI with 4.1% (Table 4 and Figure 4, left). Similar to 
Hurricane Isabel, SSWL for Hurricane Sandy first increased along the longitudinal direction to 
the upstream, and then decreased due to energy losses while propagating.  

During the peak SSWL event of Hurricane Sandy, as shown in Table 4 and Figure 4 (right), 
SSWL was smaller than the TWL at all selected gauges, indicating the storm surge signal 
coincided with relatively high astronomical tide (positive compared to the vertical datum), 
differing from the AT results for Hurricane Isabel.  But similar to Hurricane Isabel, the river 
discharge contribution to TWL, although increased in upstream direction, was rather small 
compared to other components. 

 

  

Figure 4. Water level components at selected NOAA gauges during (left) TWL peak event, and (right) SSWL peak event for 
Hurricane Sandy. 

5.1.2 Spatial Variation of Total Water Level 

The ‘trends’ of R2 and Model Skill of Hurricane Isabel were similar to Hurricane Sandy (Figure 
5). The highest correlations and skills came from the reference model (g10/g14), followed by 
scenarios simulated without river discharge (g9/g13), wind and atmospheric pressure (g2) and 
surge (g42/g46). The RMSE trends suggest the largest error deviations in TWL prediction 
occurred at distances greater than 100 km (Marcus, Burlington and Newbold gauge stations). 
The RMSE at those stations was above 0.20 m for both hurricanes, while the lowest RMSE came 
from simulations of the reference model (g10/g14), with values ranging from 0.11 to 0.32 m and 
0.25 to 0.31 m, respectively. In concordance with R2 and Model Skill, the RMSE gradually 
increased when using scenarios g9/g13, g2 and g42/g46. Bias analysis, however, leads to 
different results for Isabel and Sandy. When modeling Isabel, scenarios g10 and g2 overestimated 
TWL with maximum values of 0.12 m, while scenarios g9 and 42 underestimated TWL, with 
maximum negative values of 0.10 and 0.25 m, respectively. For Sandy, the four scenarios 
underestimated TWL with maximum negative values of 0.33 m. However, scenarios g2 and g14 
overestimated TWL in the most upstream gauge stations, Burlington and Newbold, with 
maximum values of 0.12 and 0.07 m, respectively. Overall, the most favorable RMSE, BIAS, R2, 
and Model Skill were observed in scenarios that do not include surge forcing in simulations. 
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Figure 5. Spatial variation of R2, RMSE [m], Bias [m] and Model Skill calculated with observations and scenarios derived from 
the reference model. 

 

The influence of Isabel’s wind was more evident in upstream parts of the Delaware River (figure 
5), starting at Philadelphia (distances > 150 km) where the RMSE varies from 0.20 to 0.40 m 
(Figure 6, top). Conversely, Sandy’s wind showed a gradual increase of RMSE with low values 
at the estuary mouth (RMSE < 0.05 m), moderate values in the estuary from Brandywine station 
to Ship John station (RMSE up to 0.20 m) and high values along the river from Marcus station 
to Newbold station (RMSE up to 0.30 m). The influence of river discharge on RMSE was evident 
in the upstream parts of the Delaware River in both hurricanes. Moderate-to-high RMSE 
variation (0.20 to 0.40 m) was observed from Burlington station to Newbold station, while low 
RMSE (< 0.05 m) was observed from the estuary mouth to the Delaware River mouth (at Ship 
John station). As was expected, the scenarios that ignored surge forcing exhibit the highest 
RMSE, with values above 0.30 m over the entire model domain.  

5.1.3 Total Water Level Temporal Variation 

Wind influence was further investigated at three different instances around the TWL peak, as 
indicated in Figure 6 (bottom). Before Isabel’s TWL peak, an underestimation in TWL was 
evident at the estuary mouth, and from the river mouth up to Newbold station, with values 
ranging from -0.20 to -0.40 m. From Brandywine station to Ship John station (in the middle of 
the estuary), a TWL overestimation was observed, with values ranging from 0.20 to 0.40 m. At 
TWL peak, the TWL underestimation increased from Marcus station to Burlington station, with 
values ranging from -0.50 to -0.70 m. Similarly, a TWL overestimation was observed from the 
middle of the estuary to Delaware City, with values ranging from 0.20 to 0.40 m. After TWL 
peak, the TWL underestimation decreased from Marcus station to Burlington station, with values 
ranging from -0.30 to -0.50 m. Also, TWL overestimation decreased from the middle of the 
estuary to Delaware City with maximum values of 0.30 m.  

The wind influence was more evident at the three instances for Sandy than for Isabel. For Sandy, 
there was a transition from TWL overestimation over the entire model domain, passing to both 
over- and underestimation at TWL peak and ending with underestimation after the peak was 
observed. Before TWL peaks, a relatively large TWL overestimation was evident along the river, 
with values ranging from 0.40 to 0.70 m. At TWL peak, the model domain was divided into three 
zones characterized by: 1) a TWL overestimation at the southwestern part of the estuary, with 
values ranging from 0.20 to 0.40 m; 2) a TWL underestimation in the middle-eastern part of the 
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estuary, continuing to Delaware city, with values ranging from -0.20 to -0.80 m, and 3) a TWL 
overestimation from Marcus station to Newbold station, with values ranging from 0.20 to 1 m. 
After the TWL peak, a relatively large TWL underestimation was evident along the Delaware 
River, with values ranging from -0.40 to 0.60 m.  

 

Hurricane Isabel (2003)             Hurricane Sandy (2012) 

     Surge                    Wind            River discharge              Surge     Wind         River discharge 

 

  HWL             TWL peak   HWL         HWL   TWL peak       HWL 

          Sep. 18 20:00        Sep. 19 8:00         Sep. 19 21:00  Oct.29 16:00   Oct.30 05:00        Oct.30 14:00 

 

 Figure 6. (Top) Spatial variation of TWL in terms of RMSE [m]. The spatial variation was calculated with the reference model 
and scenarios without wind, river discharge and surge, respectively. (Bottom) Temporal variation of TWL error [m]. The error was 
calculated as the difference between the reference model and scenarios without wind at three instances: high water level before peak, at 

peak water level, and high-water level after peak, respectively. 

5.2 Computational Platform and Testbench 

5.2.1 Task Parallelism Preliminary Result  

To emulate the I/O throttling, we used Hurricane Isabel dataset [19], with its 12 subsets of 96 
Megabytes (1,152 Megabytes in total) burst loaded into the memory. As shown in Table 5, 
parallelized I/O is saturated even with only four tasks issued simultaneously (average time to 
load does not change accordingly); it takes proportional time to input file sizes. As the model 
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size increases and the (task) parallelism grows, each issued task must wait for: 1) the initial and 
compulsory read and final write to permanent storage rather than memory, and 2) sporadic read 
and write that is specific to each model type. 

Table 5. I/O throttle when parallelizing reading. 

                                                          par. 4       par. 8        par. 16         par. 32 

parallel I/O 45.5 89.4 179.1 355.8 

(average) 11.375 11.175 11.19 11.18 

 

5.2.2 Inter-model comparison 

Since HEC-RAS cannot simulate wind and pressure fields over the model domain, the reference 
model (g10) was modified to exclude those two fields (g2), hence allowing a model inter-
comparison. When comparing g2 to 2D HEC-RAS in Hurricane Isabel, the four statistical 
measures present the largest differences at Newbold station, with maximum absolute values of 
0.11, 0.25 m, 0.29 m and 0.13, respectively (Figure 7). For Hurricane Sandy, the largest 
differences in these measures also occur at Newbold station, with maximum absolute values of 
0.05, 0.07 m, 0.02 m and 0.03, respectively. When comparing g2 to 1D HEC-RAS in Isabel, the 
largest differences of R2, RMSE and Model Skill also occur at Newbold station, with maximum 
absolute values of 0.29, 0.29 m and 0.57, respectively. In terms of Bias, however, the largest 
difference for Isabel occurs at Brandywine station, with maximum absolute value of 0.06 m. For 
Sandy, the largest differences of R2, RMSE and Model Skill again occur at Newbold station with 
maximum absolute values of 0.07, 0.13 m and 0.30, respectively. Similarly, the largest difference 
in Bias occurs at Brandywine station with maximum absolute value of 0.09 m. 

 

 

Figure 7. Inter-model comparison between Delft3D-FM and both 1D and 2D HEC-RAS models for Hurricane Isabel and 
Sandy. Accuracy in Total Water Level Prediction (between observations and simulations) is shown for 5 main stations. Inter-model 

comparison is presented in terms of R2, RMSE, Bias and Model Skill. 
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6. Conclusion 

This study evaluated the contribution of three main components (tides, surge, and river 
discharge) to TWL, using a set of scenarios in a model framework with validated model input. 
Analyses of the three components and their respective contribution to TWL reveal surge-
induced water level contributes most to peak water level, followed by the astronomical tide. 
River discharge, under mean flow conditions, had little influence on model results. The spatial 
and temporal TWL analysis indicated wind forcing plays a key role in TWL prediction, followed 
by river discharge. These results were more evident in Hurricane Sandy, where TWL 
underestimation and overestimation was observed in three instances of TWL peak. The wind 
module of Delft3D-FM significantly improved TWL prediction, particularly at peak water level 
in both hurricanes. Nevertheless, 2D HEC-RAS proved an simpler alternative for modeling 
storm-surge events when wind forcing is not relevant in the model domain. 

Although the proposed model framework was not devised to fully represent water level induced 
by wave and current processes, future work might complement this study by coupling a wave 
model (e.g. SWAN and/or ADCIRC) with Delft3D-FM. Similarly, a rigorous analysis of storm 
surge-induced water level is suggested for future studies, to fully decompose the tide surge 
interaction.  

 



National Water Center Summer Institute 2019 

19 

 

References

 

 

  



National Water Center Summer Institute 2019 

20 

 

Chapter 2 

Model-Based Parametric Analysis of Total Water 
Prediction in Coastal Transition Zones of the US 
East and Gulf Coasts  
Taher Chegini1, Gustavo Coelho2, and John Ratcliff3 

1University of Houston; tchegini@uh.edu 
2George Mason University; gcoelho@gmu.edu 
3University of North Carolina at Chapel Hill; john.ratcliff@unc.edu 

Summer Institute Theme Advisors: Celso Ferreira, George Mason University, cferrei3@gmu.edu; Kyle 
Mandli, Columbia University, kyle.mandli@columbia.edu; Patrick Burke, pat.burke@noaa.gov 

Academic Advisors: Hong-yi Li, University of Houston; Celso Ferreira, George Mason University; Rick 
Luettich, University of North Carolina at Chapel Hill  

Abstract:  Vulnerability to extreme weather events and flood inundation motivates development 
of an operational total water prediction modeling solution in coastal transition zones.  Coastal 
transition zones are defined in this study as the regions between the coast and upland reaches 
where tides no longer influence water level variation. Numerical modeling of these zones in 
operational settings is challenging, due to the complexity of coastal-inland dynamics and the 
computational expense of the effort.  To provide insights for tackling issues associated with 
coupling coastal-inland models, this study investigated coastal transition zones by applying 
idealized domains.  This approach facilitated in-depth analysis of relevant contributing 
phenomena through performing many simulations with different model input parameters, and 
then investigating output variability. To do this, three classes of idealized domains were 
generated, based on assessing the sizes and shapes of estuaries that have socioeconomic 
importance along the US East Coast and Gulf Coast.  These domain classes include: a direct 
river-to-coast connection, a triangular-shaped bay, and a trapezoidal-shaped bay. Physical input 
parameter variations included river discharge, bed roughness, and tidal range.  The extent of 
coastal influence in each domain was computed based on the reach of tidal signal propagation. 
Results demonstrated the damping effect of a bay on tidal signal propagation through the upland.  
In general, the presence of estuaries in a domain decreased the model’s sensitivity to input 
parameters.  Moreover, a non-linear relationship with variation in bed roughness and tidal signal 
was evident.  The results quantified sensitivities of model outputs to studied input parameters 
and provide insights into dominant processes in coastal transition zones.  These findings show 
computational efficiency of coupled coastal-inland modeling can be increased by focusing on 
the most influential parameters, and have an estimation of their contribution to output 
variability. 

 

1. Motivation 

More than 40 percent of the U.S. population lives in coastal shoreline counties, with U.S. coastal 
and ocean economies producing over $8 trillion dollars in gross domestic product [1].  While 
these coastal areas continue to attract more residents and drive a significant portion of the 
nation’s economy, they are extremely vulnerable to natural disasters. More than half the disaster 
costs incurred in the U.S. since 1980 can be attributed to damages resulting from tropical 
cyclones, with most damage resulting from storm surge and flooding effects [2].  Additionally, 
potential threats for compound flooding in coastal zones may be increasing, due to sea level rise 



National Water Center Summer Institute 2019 

21 

 

and growing probabilities for joint occurrences of heavy precipitation and storm surge events 
[3]. 

The initiative to enhance the National Water Model (NWM) to include total water prediction in 
coastal transition zones is underway, but coupling the NWM to existing coastal hydrodynamic 
models in operational settings presents challenges.  In particular, the model resolution required 
to achieve accurate solutions in dynamic coastal areas incurs considerable computational cost to 
operate. 

The initiative to couple the NWM with a coastal model involves extending coastal models further 
inland, to selected data exchange points with the NWM.  This creates a larger coastal domain to 
resolve and even more computational expenses.  With the goal of an operational system that can 
produce real-time forecasts, understanding physical processes and their contribution is essential 
to accurate and efficient modeling. 

One approach for determining potential model simplification is to perform parametric analysis 
of model outputs. For this purpose, a set of parameters and geometries of interest that can 
potentially affect coastal area dynamics, were selected.  Then, to form the parameter and 
geometry spaces, a range of possible values were estimated based on available data and 
information.  Subsequently, a set of simulations were performed according to the determined 
parameter and geometry spaces.  This process may produce insights regarding contributions of 
individual inputs toward model output variability, conclusions regarding input parameter 
significance, and guidance to apply toward subsequent studies [4]. 

2. Objectives and Scope  

This study’s objective was to quantify contributions of the most influential input model 
parameters for coastal transition zones hydrodynamic modeling.  The results provide insights 
for improving the efficiency of coupled inland-coastal modeling in operational settings.  The 
scope of this study was defined based on the following questions: 

1. Can the tidal signal amplitude threshold be evaluated to enable identification of the reach of 
coastal zone influence? 

2. Can investigation of relevant physical processes contributing to total water prediction 
provide guidance toward model calibration and efficiency? 

Delineation of tidal signal thresholds could influence decisions on data exchange locations 
between inland and coastal models, an important consideration when optimizing the balance 
between accuracy and performance.  In addition, insights into the respective significance of 
various physical parameters will help guide model calibration and efforts to achieve 
computational efficiency, by improving estimation of only relevant inputs or features. 

Due to the broad scope of this study, use of complex hydrodynamic models such as D-Flow 
Flexible Mesh (D-Flow FM) module in Delft3D FM, in combination with complex geometries 
of actual coastal areas, was not feasible.  Therefore, for this study a series of idealized domains 
were defined, based on classification of coastal areas along the US East and Gulf coasts.  This 
classification, and all relevant physical input parameters and boundary conditions, were 
determined based on a preliminary study of US East and Gulf coasts regions, details that are 
discussed in Section 4.  Three classes of idealized domains were defined: 1) direct connection of 
a river to a coast; 2) a triangular-shaped bay, and 3) a trapezoidal-shaped bay. Within these 
classes, three categories were defined to account for geometric variations that include adding 
sinuosity to the river, and adding a barrier to enclose the mouth of the bay.  In addition to 
geometric variations, physical input parameters were varied: bed roughness, river discharge, and 
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water elevation at the ocean boundary.  After running simulations, statistical analyses were 
performed on the results, based on water levels and velocities at two observation points and 
extracted tidal constituents from a cross-section along the middle of the computational domain. 

3. Previous Studies 

While many published works feature case studies that examine model sensitivities to input 
parameters, a literature survey showed few results for studies with a broad scope regarding 
various coastal areas, with similar objectives to this study.  Akbar et al. [5] examined the effects 
of variations in bottom friction on water levels during a landfalling hurricane in the Gulf of 
Mexico.  Due to energy dissipation at the seafloor, study results showed increases in water levels 
with decreases in Manning's roughness, and vice versa [6].  Bunya et al. [7] and Dietrich et al. [8] 
both showed the importance of spatially varied bottom friction on water level prediction 
accuracy. In the current study, bottom friction was constant over the whole domain.   

Calero Quesada et al. [9] showed that river discharge can influence tidal propagation through 
estuaries [9].  Since part of our objective was to delineate a tidal signal threshold, it was important 
to examine tidal signal response to variations in discharge rates.  Maskell et al. [10] pointed out 
simplification of domain geometries can allow for efficient computation, enabling many 
simulations to be performed while focusing on the significance of relevant physical 
processes [10].  Geometric variations may play a significant role in inundation processes, 
particularly with the interaction between river and storm surge components [10]. Alebregtse and 
de Swart [11] used a semi-analytical model to study the effect of river discharge on tidal wave 
propagation.  They showed that when increasing river discharge, the amplitude of semi-diurnal 
sea surface elevation decreased, while velocity was not affected. 

4. Methodology 

The transition zones between coasts and rivers, where tides have significant influence on water 
level variation, were the regions of interest for this study.  Initially, to see the extension of tidal 
environments, all active United States Geological Survey (USGS) water level stations over rivers 
and bays on the Gulf and East Coasts where tidal signals can be observed in the records, were 
identified (Figure 1a).  With knowledge of coastal regions where tidal signals are present, the 
entire coast was inspected via satellite images to identify the most common types of geometries 
that could best represent the region (Figure 1b). 

   

(a) USGS stations along the coast               (b) Images from the coast 

Figure 1. (a) USGS Water Level stations with tidal signal influence and (b) examples of satellite images extracted over the 
coastline 
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Regarding US coast heterogeneity, this study aimed to translate these complexities in a simple 
way, to produce results that can be extended to the entire country.  420 coastline images were 
gathered and analyzed.  The analysis showed that most bays follow a triangular or trapezoidal 
shape.  Thus, the coastal transition zones were categorized into three classes. (Figure 4a):  direct 
river-to-coast connection (C1), triangular-shape bay (C2) and trapezoidal-shape bay (C3).  Then, 
a sample of 46 bays and rivers was considered for parameterizing the geometries, based on four 
measurements: river width (Wr), upstream bay width (Wt), downstream bay width (Wb), and bay 
length (Lb).  Three geometry ratios were defined as references to build a relationship with the 
magnitude of processes contributing to the water level and to be replicable in other domains 
(Figure 2).  These ratios are as follows: 

𝑅𝑙𝑏 =  
𝐿𝑏

𝑊𝑏
, 𝑅𝑏𝑟 =  

𝑊𝑏

𝑊𝑟
, 𝑅𝑏𝑡 =  

𝑊𝑏

𝑊𝑡
  

 

 

   Triangular Bay       Trapezoidal Bay 

Figure 2. Geometry measurements used for classification and idealized domains design 

Based on statistical analysis of the 46 sample bays and rivers the mean and median of Rbr are 
10.1 and 8.1 respectively, and uniformly distributed over the coast, with higher values appearing 

above a latitude of 37° (Figure 3 a).  Moreover, the median of Rlb is 2.2 and higher values are 

observed for triangular shapes located between latitudes 32° and 38° (Figure 3 b). 

 

(a) Bays along the coast                                       (b) 𝑅𝑙𝑏 

Figure 3. (a)  The bays considered for classification Rbr and (b) distribution of triangular and trapezoidal bays along the 
coast based on Rlb 
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Additionally, to account for geometric variations within the classes of idealized domains, three 
categories were defined: (A) straight line river; (B) sinuous river, and (C) bay with island barriers 
(Figure 4 a).  Regarding forcings, the models were studied using variations of two main boundary 
conditions: river discharge at the upstream, and water level time series at the ocean boundary. 
The ocean region for all models has a 100 km length (perpendicular to the coast) and 50 km 
width.  Bay width (Wb) was adopted as an independent parameter to scale the idealized models.  
For all configurations with bays (classes 2 and 3), Wb was set to 10 km, based on the sampling 
mean and median (Table 1). Additionally, within each class one reference scenario was defined 
for performing statistical analyses of the results. For the reference case, bay length (Lb) was set 
to 20 km based on the median value of Rlb., and river width (Wr) to 1 km, using the sampling 
mean of Rbr.  For category B, a river with sinuosity (SI) of 1.45 was studied.  For category C, 
barrier openings that enclose the mouth of the bays were set to 2 km, equivalent to 20% of bay 
width (Figure 4 b). 

  

(a) Classifications            (b) Geometry 

Figure 4. (a)  Idealized domains classes and categories and (b) reference configuration with boundary conditions 

 

Table 1. Summary of geometry measurements statistics 

Statistic Wb Rbt Rbr Rlb 

Sample size 46 26 46 46 

Mean 11.9 km 17.2 10.1 4.7 

Standard deviation 11.3 km 23.2 14. 5.7 

Minimum 0.4 km 0.23 0.75 0.67 

Median 8.9 km 1.7 8.1 2.2 

Maximum 49 km 79 90 25 

 

A set of scenarios was chosen for the simulations and a procedure was established for each 
simulation, based on the scenarios. The procedure consisted of changing only one parameter per 
scenario, allowing quantification of input parameter contribution to output results.  Simulation 
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scenarios are shown in Table 2. These were defined based on uniform Manning's roughness at 
the bed-level, discharge in the river upstream and water level time series in the ocean boundary 
(Figure 4 b).  Two water level time series at the ocean boundary were used: predicted tides (P), 
and observed water level during a storm surge event (S). 

Table 2. Set of simulation scenarios 

Scenario Roughness (R) Discharge (D) [m3/s] Tide (T) 

Ref 0.025 0 P 

R20 0.020 0 P 

R30 0.030 0 P 

S 0.025 0 S 

D200 0.025 200 P 

D500 0.025 500 P 

 

Tides vary significantly over the study region, with lower amplitudes on the Gulf Coast than the 
East Coast.  Selection of a location as a water level data source was based on NOAA station 
proximity to a significant number of samples of higher tide amplitude during an extreme event.  
This made it easier to identify changes among the classes, the categories and the simulation 
scenarios.  Thus, at the ocean boundary water levels from NOAA station at Atlantic City, NJ 
(39°21.4' N, Lon = -74°25.1', ID = 8534720) during Hurricane Sandy (Oct 15 – Nov 10, 2012) 
were imposed. 

Moreover, results analyses were performed based on velocity and water level data extracted from 
two observation points and a cross section along the domain’s middle (Figure 5).  To identify 
the limit of coastal zone influence in upland reaches, the tidal signal amplitude was extracted for 
the M2 (principal lunar semidiurnal) tide constituent based on water levels along the cross section 
of each simulation.  The tidal vanishing point was defined as the distance at which the rolling 
average of the M2 amplitude over a window size of 20 km (5 observation points) reaches below 
0.05 m.  

 

Figure 5. The location of observation points and the cross section in the domain 
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The process contributions were evaluated based on the Root Mean Squared Error (RMSE) as a 
measure of deviation from the reference case. RMSE were computed over the entire simulation 
period in the two observation points.  All simulations were conducted using the hydrodynamic 
module D-Flow Flexible Mesh (D-Flow FM) of the Delft3D Flexible Mesh Suite developed by 
Deltare [12], with unstructured grids configured to perform 2D simulations. 

5. Results 

This section contains two subsections, to present study results according to each proposed 
research question area: (5.1) tidal signal amplitude in upland reaches  and (5.2) relevant physical 
processes contributing to total water prediction. 

5.1. Tidal signal amplitude in upland reaches 

Analysis was performed on category A for all domain classes (1, 2 and 3) to find bias from 
corresponding reference simulations for propagation distance of the M2 tidal signal upstream 
from the mouth of the river (Figure 6).  The R30 scenario, with an increase in Manning's 
roughness, resulted in decreased M2 signal propagation for all three classes, with a higher 
decrease for class 1 than for classes 2 and 3.  Scenario R20, with a lower Manning's roughness, 
produced increases for all 3 classes although class 1 again appeared to show additional sensitivity, 
with a more substantial increase than classes 2 and 3. Scenario D200, featuring an upward 
adjustment of river discharge rate, created very slight changes across all classes.  Increasing the 
river discharge for the D500 scenario produced a noticeable difference in reducing propagation 
for all three classes, with class 1 experiencing a slightly larger decrease.  Scenario TSE, the 
simulation that includes storm surge, produced M2 signal propagation distance reduction for 
class 1, with classes 2 and 3 showing minimal change. 

 

Figure 6. Tidal signal vanishing point percent bias when comparing variations in Manning’s roughness, river discharge rate, 
and storm surge across geometric classes to respective reference simulations 

The results showed that changes in selected input parameters may present indications of 
geometric influence on tidal signal propagation.  Regarding results for using variations in 
Manning's roughness, one thing to note is the apparent increased sensitivity for class 1, which 
showed both a larger increase in signal distance with a lower Manning's roughness setting, and a 
larger decrease than classes 2 and 3 when applying a higher roughness setting.  This may be 
explained as an attenuating role played by the bay, as the tidal signal damping was more 
noticeable in classes 2 and 3 than in class 1.  A small difference in propagation was seen between 
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the class 2 and class 3, triangular versus trapezoidal bays, in the R20 scenario, possibly displaying 
a funneling effect with the convergence of the triangular bay.  Length and depth of the bays 
could be important as part of this investigation, and adjustments to those domain dimensions 
could create different impacts in the results [13].  Also, it is important to note the non-linear 
relationship that can be seen when varying Manning's roughness.  Increased sensitivity was 
apparent when adjusting roughness to lower levels, indicating underestimation of this input 
parameter may create larger output differences than overestimation.  

Domain geometry also may be a factor in results of varying river discharge rate in the model.  
Class 1 again displayed sensitivity to variations in discharge, and was in line with previous 
research. This shows a relationship between tidal signal and discharge based on quadratic bed 
friction, so increasing discharge should produce less tidal signal propagation [14].  Classes 2 and 
3 presented smaller changes with river discharge increases.  A possible explanation for the 
difference between classes 2 and 3 and class 1 would again be the bay region damping effect. 

5.2. Relevant physical processes contributing to total water prediction 

RMSE was used to quantify contributions of each selected input parameter on water level (Figure 
7a) and velocity (Figure 7b) outputs at observation points 600 km downstream from the upper 
river boundary. No consequential water level changes or velocity outputs were seen at these river 
locations when bed roughness was increased or decreased.  River discharge changes had a greater 
impact on both values of all three classes, as both the D200 and D500 scenarios showed sizable 
deviation from the reference scenario in water levels when compared to the reference 
simulations, and smaller errors with velocities. 

A potential reason for limited error for both the R20 and R30 scenarios is the distance upstream 
of observation points.  The tidal signal may already have diminished enough that observation 
points were beyond the tidal influence limit, so little difference was detected for either velocity 
or water level from the reference.  Results for water levels and velocities for D200 and D500 
met expectations that increases would be seen in both values as discharge rates were raised. 

The comparison of a straight river (Category A) to a sinuous river (Category B) did not indicate 
a notable water level change (less than 0.01 m) or velocity change (less than 0.01 m/s) RMSE) 
for observation points 60 km upstream from the river mouth.   

When analyzing island barrier impact (Category C), RMSE at the transition point between ocean 
and bay was 0.04 m in water level and 0.17 m/s in velocity for triangular bays (Class 2).  For 
rectangular bay (Class 3), the RMSE is even higher, 0.08 m water level and 0.30 m/s in velocity.  
At an observation point in the river, 333 km upstream of its mouth, the bay shape had little 
effect on water level (< 0.01 m) and velocity (< 0.01 m/s) RMSE (Table 3). 
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(a) water level 

 

(b) velocity 

Figure 7. RMSE of (a) water level and (b) velocity at 600 km downstream of the river for different scenarios 

 

Table 3. RMSE comparison between categories (reference scenario) 

 C2A vs. C2C C3A vs. C3C 

Class Water Level Velocity Water Level Velocity 

River < 0.1 m < 0.01cm/s < 0.01 m < 0.01 m/s 

Bay 0.04 m 0.17 m/s 0.08 m 0.30 m/s 

 

The insights obtained from all the analyses were summarized into a parameter space (Table 
4) and a geometry space (Table 5).  The parameter space demonstrates parameter 
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contribution for each class. Based on parameter space, discharge contribution to water level 
is approximately 60% for all classes.  Thus, a more accurate estimation of discharge at the 
upstream of a computational domain can have considerable impact on the accuracy of water 
level prediction.  However, the geometry space shows triangular-shaped bays are more 
sensitive to roughness while direct river-coast connection geometry is more sensitive to 
discharge.  Also, all three geometry classes are affected by the storm surge almost equally. 

Table 4. Weighted percentage of the parameter space for water level in class 

Class Roughness Surge Discharge Sum 

C1 (River) 5 35 60 100 

C2 (Triangular) 6 34 60 100 

C3 (Trapezoidal) 2 36 62 100 

 

Table 5. Weighted percentage of the geometry space for water level for each parameter 

Parameter C1 (River) C2 (Triangular) C3 (Trapezoidal) Sum 

Roughness 39 45 16 100 

Surge 30 35 35 100 

Discharge 38 31 31 100 

 

6. Conclusion 

The objective of this work was to quantify the contribution of input parameters in hydrodynamic 
modeling of coastal transition zones. Three main findings will contribute to the improvement of 
total water prediction in the NWM: 

1. A method to classify coastal transition zones was proposed, that facilitates correlation of 
results found in idealized models to real world scenarios.  This method introduces one 
independent variable, Wb, and three dependent variables for generating an idealized 
geometry. Based on our preliminary study of the US East and Gulf coasts, a range of values 
were defined for dependent variables.  Only a subset of these ranges was considered in this 
study to keep the work scope manageable, yet informative.  Further investigation on 
unexplored ranges would help expand the applicability of the results to real world scenarios. 

2. The tidal signal influence threshold plays a significant role in defining the model upland 
domain. An accurate estimation of this point can help reduce computation cost and increase 
accuracy.  The vanishing point of a tidal signal was determined based on the principal lunar 
semidiurnal tidal constituent, M2 as it is the strongest constituent of semidiurnal regimes.  
Our investigation revealed Manning's roughness is the most significant parameter for 
determining the vanishing point.  Moreover, the results showed that when Manning's 
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roughness is underestimated, change in the tidal influence limit is larger than when Manning's 
roughness is overestimated. 

3. Investigation of the different domain configurations and scenarios demonstrated discharge 
is an important contributor in upland reaches, but not relevant in the bay.  The sinuous river 
analysis did not show changes when compared to the straight river, but further investigation 
is required, as the sinuous river length was not large enough in our study to allow full 
investigation parameters.  Additionally, it was shown that island barriers enclosing bays 
influenced water level and velocity over the bays, but not over the rivers. 

Insights provided in this work would potentially assist coastal modelers with directing available 
resources toward the most significant parameters. The guidelines introduced quantify the 
uncertainties of each parameter and can be used to estimate the total uncertainty of predictions 
under various scenarios. 

Supplementary Materials: The resources developed during this work are available on the 
GitHub repository: https://github.com/taataam/SI_2019_Coastal.  
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Abstract: In the continental US, 53% of streams [38] can be classified as headwaters. The 
National Water Model (NWM) applies a uniform model structure for hydrological processes and 
spatial scale over the whole domain. But it may not always be accurate and time-efficient in all 
watersheds, and can cause higher uncertainty in headwater or small catchments. This work aimed 
to seek a balance between computational efficiency and hydrologic fidelity in headwater 
catchments by substituting different conceptualizations of subsurface processes in the NWM. 
For this, TOPMODEL, a simple physically-based model that incorporates topographical details, 
was loosely one-way coupled with NWM’s land surface model (LSM; Noah-MP). NWM options 
and parameters were modified to produce output that is usable by TOPMODEL, with minimal 
post-processing. To evaluate model performance, streamflow simulated by the NWM and 
TOPMODEL-coupled version were compared to observed streamflow at Elder Creek United 
States Geological Survey (USGS) gage (11475560) in Eel River Critical Zone Observatory. The 
study area receives very little snow and has deeply weathered soil and bedrock that makes 
subsurface flows a dominant runoff. TOPMODEL-coupled version (PBIAS 1.67, NSE 0.75, 
RSR 0.50) outperformed the NWM (PBIAS 16.807, NSE 0.31, RSR 0.83) and was a better 
predictor of flood peak and water availability in the study area. Running the modified NWM’s 
LSM did not decrease computation time of the coupled model system. However, a significant 
benefit of the coupled model was that rapid parameter optimization of TOPMODEL could be 
performed to calibrate the model without re-running the LSM. The result of the experimental 
coupling of TOPMODEL with NWM’s LSM indicated this type of partial simplification is 
achievable, and can improve streamflow prediction. It also supports the idea of an adaptable 
hydrological modeling framework for both spatial and processes representation, to fulfill needs 
for varying environment and region.  

 

1. Motivation 

The National Water Model (NWM) is a modeling framework that aims to provide accurate 
streamflow forecasts over the continental United States. It provides complementary hydrologic 
guidance on National Weather Service (NWS) river forecast locations, and covers under-served 
locations[1]. The current NWM version is based on Weather Research and Forecasting 
Hydrologic model (WRF-Hydro) v5.0, developed and supported by the National Center for 
Atmospheric Research (NCAR). WRF-Hydro is coupled to the NOAH-MP land surface model 
[39] so the NWM configuration represents surficial, terrain routing and channel routing, and also 
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subsurface processes that involve several physics options based on grid-cell spatial 
representation. As it covers an expansive spatial area, the NWM requires considerable 
computation to run in a large domain [2], [3]. 

At least 53% [38] of reaches and watershed areas in the US can be classified as headwater, with 
34% of stream length showing moderate-high (2 - 4%) gradient [4]. The NWM framework aims 
to provide comprehensive coverage, up to and including smaller watersheds and reaches. 
However, because the NWM applies uniform model structure over an entire domain, with 
resolutions that may ignore heterogeneities in parameters and process representation, 
uncertainties may occur in headwater catchments. The spatial resolution of the terrain routing 
grid (250m) is coarse enough to disregard detailed topographical influence on hydrological 
processes that may be significant in smaller catchments [5], [6]. The NWM core, WRF-Hydro, 
only requires setting the resolution of terrain routing grid as an integer divisor of Land Surface 
Model (LSM) grid. Therefore, applying a higher resolution routing grid for headwater 
catchments may solve the problem. However, that will result in tremendous computational 
burden when done in the whole CONUS.  

Meanwhile, subsurface NWM processes are mostly decided by implicit parameter, not by 
watershed topography. Subsurface lateral flow routing in shallow soil considers topography and 
saturation of soil layers in the LSM; however, the other processes are determined by parameters 
that require calibration. GWBUCKPARM file controls groundwater reservoir storage and 
baseflow rate. It also controls slope index parameter, a linear reservoir coefficient, and controls 
underground runoff from bottom soil toward groundwater reservoir, affecting subsurface lateral 
flows[2], [7].  

We suspected the NWM’s current structural and spatial representation may not be ideal for 
representing hydrological processes in headwater or small catchments. In short, its approach 
may be neither time-efficient nor accurate. This awareness evolved into inspiration to alter the 
spatial representation and subsurface-flow processes of the current NWM. 

2. Objectives and Scope  

This work had two objectives. The first was to test different conceptualizations of subsurface 
processes and spatial representation incorporating details from topographical data. The second 
was to explore the possibility of achieving a balance between computational efficiency and 
hydrologic fidelity in nation-wide modeling, by coupling an existing model component with the 
NWM. For this, we examined the applicability of coupling, and compared streamflow prediction 
performance of the original NWM to a one-way coupled version in a headwater catchment.  

The criteria applied to select a coupling model included: 1) topography oriented; 2) structurally 
simple; 3) physically reasonable subsurface processes representation and dynamic soil moisture 
contents consideration, and 4) low computational demand. We selected the topography-based 
hydrological model (TOPMODEL) for the loose one-way coupling with the NWM. 
TOPMODEL proposes a combined groundwater pathway that respects topography and allows 
soil porosity to change with depth, and has been successfully predicting flows in numerous 
watersheds. The fact that TOPMODEL is often held as a benchmark for expanding, or newly 
formulating delineation of the relationship between the water table and runoff processes, was 
also considered [8], [9]. The aim of watershed hydrology is to understand and model emergent 
watershed behavior as some hydrologic responses are more apparent at catchment scale. Given 
this, topography-based TOPMODEL may also provide some advantage over the grid-based 
NWM in utilizing domain knowledge about watersheds. 

3. Previous Studies 
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3.1 TOPMODEL concept 

TOPMODEL, initially developed by Beven and Kirkby in 1979 [10], is considered a set of 
conceptual tools for modeling hydrological processes, specifically surface and subsurface 
contributing area dynamics, in a relatively simple way [11] (Figure 1.). It has evolved to include 
a simple theory of hydrological similarity of points in a catchment, determined by deriving a 
Topographic Wetness Index (TWI) from a Digital Elevation Model (DEM) [12]. The TWI 
divides a catchment into classes of hydrological similarity and thus simplifies TOPMODEL by 
reducing data and the number of model parameters required in simulations [13], [14]. The 
simplified structure of TOPMODEL makes it a combination of computational and parametric 
efficiency, with clear foundations in physics [15][16]. 

TOPMODEL’s ability to aptly represent impacts of terrain on hydrological processes (soil 
moisture and groundwater movement) using digital terrain model data, has led to its popularity 
in application to different LSMs. It has been successfully integrated with the Simplified Simple 
Biosphere Model (SSiB) [17], the soil–vegetation–atmosphere transfer (SVAT) model, and the 
Interactions between Soil, Biosphere, and Atmosphere (ISBA) model [18-20]. These integrations 
have shown similar conclusions: that integrating models improved discharge prediction and 
reduced the number of parameters requiring calibration. 

 

 

Figure 1. TOPMODEL concept [21] 
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3.2 Subsurface routing and underground runoff in WRF-Hydro 

The NWM system core is WRF-Hydro coupled with the Noah-MP LSM to simulate land 
surface, terrain and channel routing, and subsurface processes [1]. WRF-Hydro solves the 
Boussinesq equation for saturated subsurface lateral flow, adding exfiltration from fully saturated 
cells to infiltration from the LSM [7]. Subsurface processes are simplified through the following 
assumptions; 1) Soil layers have a uniform depth of two meters, and 2) Water table depth is 
determined in Noah-MP according to saturation of the soil layer nearest the surface. 
Additionally, baseflow is depicted using a conceptual nonlinear reservoir (referred to as an 
exponential bucket model in the WRF-Hydro documentation) for each catchment [2], [22]. The 
lateral flow/subsurface routing in the saturated zone of the 2-m soil column and a groundwater 
bucket model can be evaluated for its contribution in base flow to river discharge, stored in 
output files such as CHRTOUT (Streamflow on the 2D high resolution routing grid), RTOUT 
(Terrain routing variables on the 2D, 250m routing grid), and GWOUT(Groundwater output 
variables) [23]. The relationship between soil layer subsurface flow and underground runoff, to 
the groundwater bucket reservoir, is determined by a parameter called SLOPE or slope index, a 
linear reservoir coefficient.   

4. Methodology 

4.1 Workflow overview 

The workflow in Figure 2 (below), examines applicability of loose one-way coupling, and 
compares performance of the NWM v1.2 to the NWM LSM (Noah-MP)+TOPMODEL 
version in a headwater catchment. Spin up and model run for the NWM was done with its 
original configuration, with no alteration or calibration. Then, a modified NWM was run to 
produce LSM output that can be reformatted as hourly water flux input for TOPMODEL. 
Topographical data was used to calculate indices, and was converted to distribution function as 
required by TOPMODEL. TOPMODEL ran with numerous random sampled parameter-sets; 
an optimized parameter-set was chosen to compare the model performance with the NWM. In 
short, TOPMODEL replaced the NWM’s runoff calculation and flow-routing schemes, using 
output data from Noah-MP (LSM). Then performance of the original NWM and TOPMODEL 
coupled version were compared. 

 

 

 

Figure 2. Workflow overview for one-way coupling of TOPMODEL and NWM’s LSM  
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4.2 Land Surface Model output from NWM configuration 

The National Water Model v1.2.2 [1] was used for this study, with the study area domain file 
subset using CUAHSI Domain Subsetter (http://subset.cuahsi.org/) [24]. The domain covers 
Angelo Coast Range Reserve, or ’Elder Creek-South Fork Eel River’ watershed area that falls in 
HUC12 (hydrologic unit code) 180101060103. The North American Land Data Assimilation 
System-2 (NLDAS-2) from the National Aeronautics and Space Administration (NASA) 
Earthdata repository (https://earthdata.nasa.gov/) was used for meteorological forcing input. 
Model spin-up was done with repetitive model runs, using the first six weeks of the simulation 
period to emulate watershed wetting from dry condition (09/29/2017 - 11/09/2017). The actual 
NWM model run was done from October 1st, 2017 to April 30th, 2018 (Figure 3) 

 

Figure 3. Rainfall and observed streamflow at USGS gage 11475560 “Elder Creek.” 

Simulation of the original NWM was done with no parameter or run option alteration, to 
examine its current performance on headwater catchments. However, to produce LSM output 
to feed TOPMODEL some soil/groundwater-related parameter and model run options were 
adjusted. Surface and subsurface flow routing were deactivated to prevent LSM output from 
being disturbed by the routing scheme. The slope index parameter in the ’soil_properties.nc’ file 
was changed to 1, to prevent soil being overly saturated due to deactivated subsurface lateral 
flow. Doing this allowed free soil water gravitational drain in the bottom boundary toward the 
aquifer. Although the routing module was deactivated, this did not significantly lessen time spent 
running the model. We assumed this was because of modified NWM's setting to write 
RESTART file every hour. This was inevitable, as RESTART output file includes essential 
variables related to the internal state of the LSM. 

LSM output from the modified NWM was reformatted for TOPMODEL. Target variables that 
were initially scattered through multiple output files, such as LDASOUT (Land surface model 
output), LSMOUT (Land surface diagnostic output) and RESTART (Land surface model 
internal state output), were extracted and calculated into basin averaged. Then, any accumulated 
values were disaggregated and calculated into hourly water flux between land surface and 
atmosphere. From LSM output variables, the water flux equation established the following:  

(𝑃𝑅𝐶𝑃 − 𝛥𝐶𝐴𝑁𝑊𝐴𝑇 − 𝛥𝑆𝑁𝐸𝑄𝑉) − 𝐸𝑇 = (𝑅𝑈𝑁𝑂𝐹𝐹 + 𝛥𝑆𝑀𝐶)        (Equation 1) 
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𝑃𝑅𝐶𝑃 is precipitation(mm); 𝐶𝐴𝑁𝑊𝐴𝑇 is canopy water storage(mm); 𝑆𝑁𝐸𝑄𝑉is snow water 

storage(kg/m2); 𝐸𝑇 is calculated total evapotranspiration(mm); 𝑅𝑈𝑁𝑂𝐹𝐹 includes surface 
runoff and underground runoff to groundwater bucket, and SMC is total volumetric soil 
moisture contents. LSM output variables on the left of Equation 1 are used as TOPMODEL 
input; water that reaches the ground-surface and evapotranspiration. From this input, hydrologic 
components from the right side can be calculated by TOPMODEL. R package ’rwrfhydro’, 
distributed by NCAR, was applied extensively to handle Network Common Data Form 
(NetCDF) output data of WRF-Hydro [25].  

4.3 TOPMODEL 

TOPMODEL itself has been claimed as a conceptual approach tool by the original paper [10], 
[12], however, multiple efforts have developed it into an accessible hydrological modeling tool 
[26], [27]. In this research, we used implementation version R of TOPMODEL [28]. 
R.TOPMODEL offers a topographical data process function to calculate topographic index, but 
topographywas partially processed by TauDEM [29].   

𝑇𝑊𝐼 = 𝑙𝑛    (Equation 2) 

 
The following topographic index distribution was used for input to TOPMODEL (Figure 4). 

 

 

Figure 4. Topographic index distribution in the study area 

Reasonable parameter bounds were set to random sample parameter sets (Table 1) [31]–[33]. 
Surface hydraulic conductivity (k0) was the exception, setting the upper bound very high 
(100m/h), to allow the model to simulate the case where no infiltration excess occurs at all. 
TOPMODEL ran 50,000 times within 5 minutes on a laptop environment (Intel Core i7-
8750H). That showed this type of model coupling may benefit in lower time demands for 
parameter calibration/optimization process, however, there is no guarantee the same will apply 
for a different type of ‘tighter’ coupling. The best parameter set with highest NSE was recorded 
and used to compare the simulated streamflow in time series. 
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Table 1. Range of reasonable TOPMODEL parameter ranges[31]–[33] 

 
Parameter Min Max Description Sensitivity[31] Reference 

Qso 

(m/h) 

0.0005 0.00075 Initial subsurface flow 

per unit area 

Insensitive Abou-shanab et al., 2011 

0 0.0001 Cho et al., 2019 

lnTe 

(𝒍𝒏(𝒎𝟐/𝒉)) 

-3.3 -1.5 Areal average of soil 

surface transmissivity 

More sensitive,  

peak flow 

Abou-shanab et al., 2011 

-7 10 Cho et al., 2019 

0.5 1.5 Nan et al., 2011 

m 0.054 0.085 Scaling parameter for 

transmissivity decline 

Highly sensitive,  

base flow 

Abou-shanab et al., 2011 

0.001 0.25 Cho et al., 2019 

0.0001 0.03 Nan et al., 2011 

Sr0 

(m) 

0.00001 0.01 Initial root zone storage 

deficit 

Insensitive Abou-shanab et al., 2011 

0 0.01 Cho et al., 2019 

Srmax 

(m) 

0.02 0.1 Maximum root zone 

storage deficit 

Sensitive,  

physically based 

Abou-shanab et al., 2011 

0.005 0.08 Cho et al., 2019 

0 0.5 Nan et al., 2011 

Td 

(h/m) 

10 40 Unsaturated zone time 

delay 

Less Sensitive Abou-shanab et al., 2011 

0.001 40 Cho et al., 2019 

0.001 50 Nan et al., 2011 

vch 

(m/h) 

2300 4000 Channel routing 

velocity 

Sensitive,  

time to peak 

Abou-shanab et al., 2011 

50 2000 Cho et al., 2019 

500 9000 Nan et al., 2011 

vr 

(m/h) 

 

50 

2000 Surface routing velocity Time to peak Cho et al., 2019 

500 5000 Nan et al., 2011 

k0 

(m/h) 

0.0011 0.1 Surface hydraulic 

conductivity 

Physically based, 

infiltration excess 

Abou-shanab et al., 2011 

0.0001 0.2 Cho et al., 2019 

psi 

(m) 

0.11 0.25 Wetting front suction; 

not included in 

r.TOPMODEL 

Insensitive,  

Green-Ampt 

parameter 

Abou-shanab et al., 2011 

0.01 0.5 Cho et al., 2019 

dTheta 0.25 0.36 Water content change 

in wetting front; not 

included in 

r.TOPMODEL 

Insensitive,  

Green-Ampt 

parameter 

Abou-shanab et al., 2011 

0.01 0.6 Cho et al., 2019 

 

4.4 Study area 

Well-studied and data-rich headwater catchment was chosen as a study site, to test model 
coupling validity and to consider future study extension. This study focused on Angelo Coast 
Range Reserve (39°43’47” N, 123°38’34” W), an area within the Eel River Critical Zone 
Observatory. It is one of the University of California’s Natural Reserves and is located on a 
tributary of the South Fork of Eel River in Northern California. The modeling was done for the 
sub-catchment of the USGS ’Elder Creek’ stream gage site (11475560). The study site has a steep 
hillslope (average 32°) that drains to the Elder Creek catchment (approximately 17-km2), at 392 
m above sea level [34]. The area’s climate typically features warm, dry summers and cold, wet 
winters, with annual average rainfall of 2042 mm, and very little snow. Most precipitation occurs 
between October and May [35]  



National Water Center Summer Institute 2019 

39 

 

 

Figure 5. Study area: Elder Creek-South Fork Eel River watershed in California 

The underlying geology of the study site consists of the Franciscan Formation Coastal Belt. This 
area is described as well-bedded, little sheared, and containing locally highly-folded mudstone-
rich turbidities with interbeds and lenses of sandstone and conglomerate [36]. Thick weathered 
bedrock (5-25 meters) is overlaid with a thin soil layer (0.5–0.75 meters). Most of the site is 
underlaid by almost vertically-dipping argillite that strikes approximately parallel to the hillslope 
gradient. Groundwater levels indicate flow is directed across, rather than along, the bedding 
orientation. Pervasive fracturing likely prevents the bedding from controlling groundwater flow 
direction. Along the eastern divide, a sandstone interbed is exposed at the surface [36]. 

5. Results 

In this section, we compared the model performance of simulated original NWM streamflow, 
and TOPMODEL that received the NWM’s LSM output. Due to time constraint, streamflow 
was the only criterion applied for model evaluation. We used Percent Bias (PBIAS), Nash-
Sutcliffe Efficiency (NSE), root mean square error to the standard (RSR) as a statistical score. 
The flow duration curve, one of the simplest hydrologic signatures, was generated to briefly 
inspect the model’s capability to predict water availability in the watershed. 

For hourly streamflow, the NWM has shown a notable difference in hydrograph from the 
observed value (Figure 6). It returns poor statistical scores at PBIAS, 16.80%, NSE, 0.31, and 
RSR, 0.83. Most critically, the NWM consistently failed to simulate the magnitude of peak flow, 
predicting it to be significantly smaller than it actually was. According to the flow duration curve, 
the NWM prediction for water availability during low flow season is better. However, the slope 
and overall flow duration curve shape are considerably ‘off’ from observed values for the 
remaining 80% of the time (Figure 7). 
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In contrast, the TOPMODEL coupled version showed high similarity on hydrograph, except 
during low flow conditions (Figure 6). Similarly, statistical scores greatly improved compared to 
the NWM at PBIAS 1.67(%), NSE 0.75, RSR 0.50. Overall, flow duration curve shape and slope 
are almost identical between models for 75% of the simulated period, but the TOPMODEL 
coupled version overestimated water availability during low flow season. During the parameter 
optimization process, the TOPMODEL was shown as highly sensitive to parameter lnTe, and 
moderately sensitive to qs0 and m parameter (Figure 8). Order of sensitivity shows some gap 
between previous research[25], implying parameter sensitivity trend may differ by cases (Table 
1). 

 

 Figure 6. Streamflow: NWM vs TOPMODEL vs USGS observed 

Figure 7. Flow duration curve: NWM vs. TOPMODEL vs. Observed 
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Figure 7. Parameter sensitivity. The x axis represents TOPMODEL parameters, y axis represents the Nash-Sutcliff Efficiency. 
(a): qs0, (b): lnTe, (c): m, (d): Sr0, (e): Srmax, (f): td, (g): vch, (h): vr, (i): k0 

6. Conclusion  

This experiment showed a simple, one-way coupling of TOPMODEL with NWM’s LSM 
outperformed the NWM v1.2, for simulating both flood peak magnitudes and water availability 
via the flow duration curve. Such a result could be due to different degrees of detailed 
topographic data usage, runoff and flow processes representation, parameter calibration process, 
or a combination of these factors. The one-way TOPMODEL and NWM coupling is structurally 
less complex, compared to WRF-Hydro coupling, and is capable of carrying more accurate detail. 
The detachment of distributed LSM’s output from NWM’s other modules is relatively simple 
and can benefit TOPMODEL. Running modified NWM’s LSM does not reduce runtime, but 
the parameter calibration process of TOPMODEL is very time efficient.  

This work had some limitations. One issue arose from the type of coupling done between 
TOPMODEL and the LSM. It does not allow models to update the internal state reciprocally, 
and this resulted in soil moisture being considered twice when calculating evapotranspiration 
(ET). This can result in underestimation of ET. However, it can be easily solved by bypassing 
the ET calculation scheme of TOPMODEL. Another limitation was that the LSM’s output was 
averaged for the area of LSM cells that falls in the watershed boundary, not for the exact 
watershed area with area weighting. This inaccurate zonal averaging is attributable to 

(a) (b) (c)

(f)

(i)

(d) (e)

(h)(g)
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complication and discrepancy in the coordinate reference system of WRF-Hydro grids in 
NetCDF format. 

Coupling of TOPMODEL was a test case to show that even a simplistic loose coupling of an 
existing lumped or semi-distributed model with LSM can lead to a better result. A modular 
approach to allow multiple physics options (e.g. the Structure for Unifying Multiple Modeling 
Alternatives or SUMMA [37]) is expected to be one future direction that hydrologic modeling 
may take. From the study results, we assumed it was reasonable to consider a modular approach 
in structural level. The national scale hydrologic modeling framework that can adopt different 
model structures and spatial representation based on specific needs, instead of a single, uniform 
structure over the whole domain, could have some benefit over current NWM in streamflow 
prediction. 

We suggest further research be conducted to assess the impact that coupling between hydrologic 
models of different complexities can have on model performance. This may involve different 
levels of integration or coupling in hydrologic modeling: 1) a loose one-way coupling based on 
external data sharing without structural reformation; 2) a one-way coupling that manages the 
overlapping internal structure or components of the models, 3) a tight two- or multiple-way 
coupling with different models communicating and updating internal state through an 
overlapping structure or component. Would there be a significant gap between model 
performance due to different applications? How important is the numerical inaccuracy that can 
occur from coupling practice, when coupling a parameter-parsimonious model? Answering such 
questions could provide insight into the development of a coupling approach for models with a 
different structure. 

The successful application of TOPMODEL in this work shows that partial simplification of 
NWM structure at headwater catchments can be achievable and desirable, which could allow the 
model to be more realistic and computationally efficient.  

Supplementary Materials:  

Experimental 1-way TOPMODEL-NWM coupling, HydroShare, 
http://www.hydroshare.org/resource/aa8fb91200294550a26f1cb10aeccac9ptional. (currently 
private). 
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Abstract: Conceptual hydrology models, e.g. TOPMODEL, represent an attractive alternative 
to distributed models, especially due to their simplicity, parsimony and computational efficiency. 
However, they often lack physical concepts and are unable to capture relevant hydrologic 
phenomena in certain areas. This study examined surface runoff generation in the Northeastern 
US, specifically the Hubbard Brook, NH, and Sleepers River, VT, watersheds, where saturation 
excess is the dominant runoff generation mechanism. We compared an established 
TOPMODEL version that uses watershed topography to predict subsurface and overland flow, 
against an alternate model we created that also accounts for soil and groundwater characteristics. 
Results showed TOPMODEL tends to over-predict peak flows from intense rainfalls and under-
predict the others. The alternate model greatly over-predicts peaks, although this should be 
attributed to imperfect calibration of the delay function for overland flow routing. We used water 
volume error to assess model performance corresponding to peak flow events, and found errors 
vary across events but are, in general, comparable between the two models. The study found 
conceptual models can reproduce saturation excess runoff relatively quickly and with sufficient 
accuracy. When applied to small watersheds, model results can be passed to larger basins, 
overcoming the reliance of fully distributed models on coarse grids (> 50 m resolution) for 
hydrologic simulation. 

 

 

1. Motivation 

Hydrologic models serve, among other purposes, to predict stream flows in areas of interest 
during storm events. The ability to do this accurately is of utmost importance for hazard 
emergency management and watershed planning purposes. Computational efficiency is also an 
important characteristic, as models must be able to take advantage of the high quantity and 
quality of data currently available, to minimize use of computational resources. Conceptual 
models have the potential to be accurate and efficient at the same time. They are built around a 
few hydrologic concepts, need limited amount of data input and are parsimonious, since they 
use a minimal number of parameters. While parsimony results in easier calibration and fewer 
uncertainties, their simplicity may not allow the capture of all relevant hydrologic processes, thus 
limiting their applicability across scales, climates and landscapes. 
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The National Water Model (NWM) focuses on hydrologic predictions at the continental scale 
and uses grids of coarse resolution; 1 km for land surface and 250 m for routing [1]. Such 
resolution is, in most cases, too high to effectively model headwaters catchments, which 
represent the majority of modeled catchment.  Additionally, the NWM has shown problems 
when modeling saturation excess runoff, which in some regions is the main runoff generation 
mechanism. This has repercussions on streamflow prediction. 

2. Objectives and Scope  

This study focused on saturation excess overland flow (Dunne runoff) and investigated the 
ability of two parsimonious models of reproducing streamflow values through rainfall-runoff 
transformation. This approach can be adapted and incorporated into the NWM, to improve its 
performance, taking full advantage of high-resolution data available (topographic and geologic) 
in a computational efficient fashion. This study did not attempt to explicitly model other 
fundamental hydrological processes, such as interception, evapotranspiration, snowmelt, or 
streamflow routing, which are already part of the NWM. Instead, the objective was to study 
possible saturation excess runoff formulations that can plug into the existing NWM framework. 

Our work takes TOPMODEL as the conceptual base for the parsimonious models. A 
comprehensive description of TOPMODEL and its applications are provided in the following 
section. We used an R package implementing TOPMODEL as the first parsimonious model [2]. 
We developed a second parsimonious model (in the following, alternate model) based on 
TOPMODEL’s primary assumptions, but also using physical equations for subsurface flow and 
groundwater table oscillations to characterize a watershed. Since the relationship between soil 
moisture and overland flow is crucial to quantify saturation excess runoff, we explicitly 
introduced the physics beneath this process in the alternate model.  

We applied the TOPMODEL R version and the alternate model in two study areas in the 
Northeast U.S with topographic and geologic characteristics that make saturation excess the 
main mechanism of runoff generation. The results provide insight into the usefulness and 
accuracy of modeling saturation excess runoff using minimal input data and the least number of 
parameters. An accurate parsimonious model would greatly improve NWM predictions quality 
across different scales, even in small- and medium-sized watersheds, and could possibly benefit 
the NWM infrastructure by minimizing computational resource requirements. 

Finally, we acknowledge the importance of reproducibility and continuous improvement in 
hydrology. Hence, all datasets used, and code written for this study are available for access 
through a GitHub and a Hydroshare repository. Both links are provided at the end of this report. 

3. Background and Previous Studies 

Hydrological processes in a catchment are dynamic and heterogeneous. Given a lack of 
measurements of state variables and catchment attributes, a minimal number of parameters is 
preferable for representing hydrological connectivity and catchment response. Detailed process 
modeling would require more calibrated parameters, and that would increase model uncertainty. 

TOPMODEL simulates hydrological fluxes that rely on topographic information (catchment 
area, local slope, and topographic wetness index). Beven et al. [3] consider TOPMODEL as a 
set of conceptual tools that reproduce the dynamics of both surface- and subsurface-contributing 
behavior, in a semi-distributed way. The Topographic Wetness Index (TWI) represents the 
tendency to develop saturated conditions in the catchment. Areas with higher TWI values 
represent greater runoff generation. The index derives from the upstream area that drains 
through the unit contour at a designated point, and the slope of the local ground surface. A 
simple approximate relationship between catchment storage deficit and lateral transmissivity is 
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developed within the TOPMODEL framework. These relationship attributes form basic 
physical equations for simulating a catchment response. Given its semi-distributed functional 
framework, it bridges the gap between complex distributed process models and simple lumped 
concepts [4]. R’s TOPMODEL package converts topographic effects into a distribution of 
classes while simulating runoff in the outlet. 

TOPMODEL relies on three basic assumptions [3]: 1) steady-state condition for a saturated 
zone; 2) local hydraulic gradient of a saturated zone approximated by local surface topographic 
slope, tan β, 3) an exponential transmissivity decay function with depth (or equivalent moisture 
deficit). TOPMODEL simulates three layers of the soil column (root, unsaturated and saturated 
zones) as three interconnected reservoirs. The parameters TOPMODEL deals with include: 
initial subsurface flow; transmissivity decay rate in the soil profile; hydraulic conductivity at the 
surface, and others explained fully by Buytaert [2]. 

Fractional saturated areas in a catchment and their correlation with soil moisture are key concepts 
for surface runoff formulation [5]. Conceptually, when precipitation falls over those saturated 
grids, it converts into surface runoff. With no precipitation, the groundwater table naturally 
lowers and soil water flows laterally down to the outlet where subsurface flow discharges to a 
stream. Lateral flow is only modeled in the saturated part of the soil since unsaturated flow takes 
more time to drain. More recent implementations address heterogeneity of soil moisture due to 
topography variation. For example, Gedney and Cox [6] use information of sub-grid topography 
variation and the height of the mean water table to predict low land saturation.  

This study’s alternate model proposes a simple relationship between saturated areas and soil 
water content, when saturation excess is the dominant type of runoff. While it is based on 
TOPMODEL assumptions, the alternate formulation can run without the TWI, to build a 
functional relationship. As more rain falls onto the watershed, the relationship generates a 
saturation excess runoff simulation. Thus, a characteristic diagram of saturated areas and 
volumetric content in soil can replace the topographic index of hydrological similarity in a 
catchment. This watershed characterization best applies to small-scale catchment (less than 10 
km2), a scale most distributed hydrological models have difficulty capturing. Finally, the alternate 
model replaces the routing scheme by simply calculating overland flow volume generated at an 
hourly time step. This is potentially useful since a daily time step, with response time typically in 
hours, cannot capture the dynamics of a small catchment,  

4. Methodology 

4.1 Overview 

In this study we ran hydrologic simulations using the TOPMODEL (R package) established 
version and an alternate TOPMODEL-based model we developed, that incorporates soil 
parameters. Simulated hydrographs were then compared to observed hydrographs, to evaluate 
the performance and the weaknesses of models. 

4.2 Study Sites 

4.2.1 Hubbard Brook 

The Hubbard Brook watershed in North Woodstock, New Hampshire is an extensively studied 
watershed [7]. The availability of a longstanding hydrologic data set made it an ideal choice for 
a study site. Hubbard Brook forest has nine individual subcatchments, as shown in Figure 8. 
Subcatchment #7 (HB7) served as our preliminary study site. We chose HB7 because it is a 
substantially natural area where no artificial practice has ever been introduced for research 
purpose (e.g. clear cut of vegetation). HB7 size is approximately 0.75 km2. 
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Figure 8. Hubbard Brook Watershed [8] 

4.2.2 Sleepers River 

The Sleepers River Research Watershed, in Vermont, has been an active hydrologic research site 
since 1959. Here, Dunne and Black (1970) determined controls of saturation-excess overland 
flow on streamflow generation. Specifically, we chose watershed W-3 as study area (Figure 9), 
covering an area of approximately 9 km2. 

Glaciers that covered New England thousands of years ago shaped the present landscape and 
impacted its hydrological patterns. Most of the watershed is covered by 1-4 meters of glacial till, 
leading to high buffered streamflow due to calcite weathering within the till. The climate is 
continental, with an average temperature of 6 degrees Celsius and average annual precipitation 
of 1.1 meters, of which approximately 20-30% is from snow [9]. 

 

 

Figure 9. Sleepers River Watershed 

4.3 TOPMODEL (R Package) 

The study areas described in section 4.2 were modeled first with TOPMODEL. The main 
TOPMODEL function in R requires input of five variables: 1) a set of ten parameters; 2) a TWI 
data frame representing TWI values distribution for the Digital Elevation Model (DEM) of the 
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catchment; 3) a delay data frame representing channel routing through the watershed, and 4&5) 
precipitation and potential evapotranspiration values. For a more thorough description of these 
five input variables, see Buytaert [2]. 

The TOPMODEL R package has functions that can calculate TWI and delay data frames, using 
only the DEM of the catchment. Precipitation values were obtained from the Analysis of Record 
for Calibration (AORC) [10] and converted to meters of precipitation per hour. Flow data was 
obtained from the USGS and converted to cubic meters per hour per unit area. 
Evapotranspiration (ET) data was not available and, therefore was estimated using the water 
balance equation. We used the water balance method to find the average rate of ET for 
catchment W-3 was approximately 3 mm d-1.  With this information an ET vector was created 
that ranged from 2 to 5 mm d-1, with colder months having lower values and hotter months 
having higher values. For future modeling, we recommend using independent measurements, or 
estimates of ET. 

Parameters of TOPMODEL were estimated based on the range of values found in literature for 
sub-catchments W-3 of Sleepers River and Hubbard Brook. We also provided parameter ranges 
to a Hydroinformatics team of Fellows at the 2019 Summer Institute. The Fellows created 22,000 
sets of parameters sampled with pseudo-random techniques [11], and performed a Sobol 
sensitivity analysis [12-13]. A full explanation of this sensitivity analysis can be found in their 
report, A Visualization Workflow for Quantifying Parameter Sensitivities to Uncertainties for Hydrologic 
Models. Through their sensitivity analysis, it was learned the parameters of initial subsurface flow 
(qso), rate of decline of transmissivity in the soil profile (m), and maximum root zone storage 
deficit (srmax) are the most sensitive. Numerous experiments with different values for each 
parameter were performed to evaluate how each would affect simulated flow. One interesting 
conclusion from this analysis was that different months of the year should be calibrated with 
different values of qso. Therefore, TOPMODEL is not recommended for modeling a months-
long time period. This study focused on a limited period of 2 weeks for HB7 (June 24th – July 
7th, 2014) and 6 weeks for Sleepers River (April 30th – June 12th, 2017). These date ranges were 
chosen so snowmelt process could be considered exhausted and would not interfere with 
rainfall-runoff transformation. 

4.4 Alternate Model 

Our alternate model incorporated TOPMODEL assumptions to characterize the hydrologic 
behavior of a watershed, and applied a synthetic relationship to rainfall-runoff transformation. 
Three important assumptions of the alternate model were that in a given watershed: 1) the soil 
was highly porous, and thus contribution of infiltration excess (Hortonian runoff) to overland 
flow was negligible; 2) the unconfined aquifer thickness was spatially uniform across the 
watershed and limited to a few meters (<5), and the groundwater table and ground surface had 
the same slope, and 3) water transmissivity decayed exponentially as soil moisture deficit 
increased. 

The alternate model was made of two distinct parts, or algorithms, as illustrated in Figure 3. Part 
1 characterized the watershed, with a relationship between the proportion of saturated area and 
total soil water content or, equivalently, soil water deficit. Because saturation excess was 
generated by watershed areas susceptible to becoming completely saturated and hydrologically 
connected to the outlet, the amount of runoff based on estimated soil water content at the 
watershed level could be quantified. To accomplish this, the algorithm identified DEM flow 
direction based on the prevalent slope in the D8 scheme [14]. The algorithm started from an 
ideal condition of complete watershed saturation and simulated natural groundwater lowering 
and subsurface flow to the outlet. At each time step, it identified the saturated cells, calculated 
the ratio of saturated area over total area, and recorded the water amount stored in the aquifer, 
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in both unsaturated and saturated layers. Hence, corresponding values of saturated area ratio and 
normalized soil water content built a relationship useful for modeling saturation excess in an 
actual hydrologic model. The pseudocode in Algorithm 1 (below) summarizes the steps of Part 
1. 

 

 

Figure 3. Alternate model overview. Part 1 simulated watershed drainage from an initial condition of complete saturation, to generate 
the relationship between saturated area and soil moisture. The relationship was used to model the non-linear reservoir in the rainfall-

runoff transformation in Part 2. 

Differently from Part 1, Part 2 moved away from a distributed model and treated the watershed 
as one reservoir that behaved according to the relationship defined in Part 1. In fact, Part 2 was 
a lump type model. It took precipitation and evapotranspiration as input and applied the mass 
balance equation to determine subsurface storage and overland flow at the watershed outlet. 
Subsurface flow was modeled with a non-linear function of the storage ratio: 

𝑄𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝑏 ∙ 𝐴 ∙ (
𝑆

𝑆𝑚𝑎𝑥
)

𝑛

    (1) 

where A was the watershed area, S the soil water storage, n (>1) a decay rate parameter and b 
the subsurface flow per unit area at full soil saturation. We calculated b reversing Equation 1 and 
used the streamflow record from the end of April, when snow was melted and the soil 
supposedly saturated. We estimated n with a trial-and-error approach, to better approximate the 
observed hydrograph. Pseudocode in Algorithm 2 (below) summarizes rainfall-runoff 
transformation algorithm in Part 2. The key concept was that soil water storage and surface 
runoff (eq. 1) were strictly related and follow the relationship from Part 1 (fig. 3). 
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Algorithm 1. Pseudocode for Part 1 of the alternate model (DrainTheWatershed). 

 

Algorithm 2. Pseudocode for Part 2 of the alternate model (RainfallRunoffSimulation). 
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5. Results 

5.1 Hubbard Brook subcatchment #7 

Figure 4 (below) shows observed and modeled streamflow from June 24th through July 7, 2014 
in HB7. Both TOPMODEL and the alternate model reproduced fairly well the peak flow size 
for the main storm event that occurred during this time period. The time to peak for the models, 
however, was a few hours delayed from the observed. There were minor discharge increases 
around July 4th that were not observed, despite a 1-hour rain of significant magnitude. Overall, 
modeled hydrographs were very close to observed hydrographs and the models behaved quite 
satisfactorily in this study area. Still, the problem remains of how reliable precipitation forcing 
data are, with a very small catchment. While in a large watershed errors in precipitation values 
and/or timing might even out, and overall mitigate, similar errors in a small catchment may lead 
to significant errors in streamflow prediction, without possibility of amendment. 

5.2 Sleepers River 

Figure 5 (below) shows observed and modeled streamflow from April 30th to June 12th, 2017 in 
W-3 watershed of Sleepers River. Visually, from the graphs neither model performed as well 
here when compared to HB7. TOPMODEL overpredicted most peak flows and did not do a 
good job capturing peak events duration. The tendency was to overpredict peak flows from 
intense rainfall events and underpredict peak flows from weaker rainfalls. The alternate model 
performed well in recognizing flow peaks, including minor ones. Observed and modeled peaks 
aligned, and the alternate model did not generate more peaks than were observed. However, 
peaks were greatly overestimated at the beginning of the simulation and were shorter in time. 
Two weeks in the simulation peaks were better reproduced, with the last event, around June 6th, 
underestimated. The alternate model responded immediately to precipitation inputs and peaks 
had a sharp shape, especially on recession limbs. One limitation of the alternate model was the 
absence of a delay function, normally introduced in lumped models to account for water travel 
time from the most hydrologically distant areas, to the outlet [15].  

The alternate model was qualitatively valid as it could predict when a discharge peak occurred 
but was not reliable for quantification of peak magnitude. Nash-Sutcliffe Efficiency and peak 
average error are typical ways to assess performance of a hydrologic model [16]. However, Figure 
5 already shows high systematic discrepancies between modeled and observed streamflow at 
major peaks, and we expect the abovementioned indicators indicate a mediocre performance of 
that model. Many factors affected model overprediction, including: lack of a delay function; 
effective correspondence of model hypotheses to reality; imperfect model calibration; rainfall 
data quality, and the amount and variability of evapotranspiration through the season. 
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Figure 4. TOPMODEL and alternate model streamflow simulation in Hubbard Brook subcatchment 7 for the period from June 
24th to July 7th, 2014. Decay parameter for transmissivity m = 0.015, as estimated from sensitivity analysis. 
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Figure 5. TOPMODEL and alternate model streamflow simulation in Sleepers River W-3 watershed for the period April 30th to 
June 12th, 2017. Decay parameter for transmissivity m = 0.0279, as estimated from sensitivity analysis. 

 
To compare TOPMODEL’s performance with the alternate model, we computed the outflow 
per unit area for the top four peak events that occurred between May 1st and June 12th, 2017. We 
defined an event as three hours before to three hours after a peak occurrence. Thus, each event 
considered is a seven-hour duration. Volumes per unit area were computed by integrating flow 
per unit area over the seven-hour duration of each peak. Table 1 shows the alternate model 
performed better than TOPMODEL in all events considered, although in at least two cases the 
errors were very close. One explanation for the performance difference was that TOPMODEL 
does not explicitly model saturation excess, the main form of runoff in the study area. Another 
important difference was the way parameters were used in the two models. TOPMODEL 
characterized watershed hydrologic behavior mainly through TWI, determined exclusively by 
topographic information from the DEM. Other important hydrologic properties, such as soil 
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hydraulic conductivity and transmissivity decay, were introduced later as additional parameters. 
In contrast, the alternate model used topographic and soil information together to characterize 
watershed hydrologic behavior. Most relevant parameters were introduced at the beginning, and 
concurred to determine the relationship for saturation excess between soil water content and 
fraction of saturated area. The disadvantage of this approach was that it was more difficult to 
calibrate the model since a new relationship had to be built at each attempt. However, fewer 
parameters were used in the alternate model, and future development might be to add a specific 
calibration function, possibly incorporating sensitivity analysis rationale.  

Table 1. Volume per unit area of the top five peak events for Sleepers River during April 30 - June 12, 2017 

 

6. Conclusion 

Motivation for this study arose from the need for a hydrologic model that is accurate and 
simultaneously computationally efficient. Although conceptual models condense hydrologic 
concepts in simplified equations to represent water storage in catchments, they often overlook 
the physics beneath the process. Our study attempted to conjugate these two general trends and 
present a model formulation that follows TOPMODEL steps as a conceptual and parsimonious 
model, but also took advantage of high-resolution data and explicitly introduced physics. 

We focused our efforts on saturation excess runoff generation, which is dominant in some U.S. 
regions. Groundwater tables rise and decline quickly, and terrain gets frequently saturated in 
those regions. The alternate model we created first established a relationship between soil 
moisture and saturated areas, then applied a simple rainfall-runoff routine using that relationship. 
The results were compared to TOPMODEL simulation and observed data, to assess model 
performance, and to highlight differences between them including weaknesses and potential 
application in regions needed.  

Given the simplicity of parsimonious models, discrepancies between model results and 
observations are not surprising. The results indeed represent a satisfactory first step toward a 
successful application of TOPMODEL-based models. Some improvements and more testing 
can be made in the future, such as: refining model calibration; introducing a delay function based 
on watershed size and shape; analyzing larger watersheds in the context of scaling and 
continental climates, and possibly implementing other hydrologic routines, such as snowmelt 
and infiltration excess. TOPMODEL is known to work best in high precipitation areas with 
moderate topography and shallow, permeable soils [17], so it would be worthwhile to investigate 
whether the alternate model can be adapted to areas with different climates, landscapes and 
geology than those tested in this report. 

The alternate model has considerable potential for incorporation into the NWM. Effective and 
fast simulations on headwater watersheds may allow results to be shared along the stream 
network and the fully distributed model currently in use to be  applied with coarse grids, to just 
the main stem of major rivers. The results of this work have been constantly improving trend, 
especially during the final week of the Summer Institute, driving our optimism about the models’ 
capability. The study is worth further investigation, and substantial improvements are within 
reach. Currently, the direction for hydrologic modeling is to integrate multiple approaches that 
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can be applied in different landscapes. The contribution of our study, which emphasizes model 
simplicity, flexibility and efficiency, becomes absolutely relevant in this context. 

Supplementary Materials:  

Our GitHub repository is found at https://github.com/brittbarreto/Aquaholics_Anonymous, 
where data sets, scripts used from R’s TOPMODEL and our alternate model’s Python scripts 
are tracked. The material is also available in the Summer Institute 2019 Hydroshare group 
(https://www.hydroshare.org/resource/1db946e29baa433b9ef5263a835f64e9/). 
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Abstract: The process of hydrological model calibration is computationally burdensome and 
time consuming. Brute force and Monte Carlo style model evaluations are often used to perform 
this task, unequivocally requiring a colossal number of model simulations over a large domain 
of time. Frameworks capable of performing these approaches exist for the National Water Model 
(NWM), however, they 1) are not publicly available and 2) require the use of cluster computing 
(CC). In this report, we deliver an engine for perturbing NWM channel parameters, an ensemble 
generator for collating model outputs, and a dockerized job scheduler (DJS) capable of 
automating, managing, and executing numerous NWM simulations simultaneously. All these 
deliverables were developed using open source tools and programming languages capable of 
running agnostic to a given operating system. This framework was designed with the intent of 
removing the overhead of model setup and compilation, thereby lowering the barrier for entry 
without limiting performance, and also facilitating an environment for scientists to more easily 
test hypotheses. To test our tools, we ran our workflow on an uncalibrated catchment using 
NWM version 2.0. It is worth mentioning that performance of ensemble simulations reported 
was unfit, which was expected due to use of an uncalibrated catchment. However, this is of little 
importance as the robust, scalable computational performance of our framework is the greatest 
result of our work. 

 

1. Motivation 

Motivation for producing such a framework evolved from the desire to test our hypothesis: that 
an ensemble average produced by perturbing channel parameters may yield a more accurate 
result in the case of extreme events. This hypothesis was not sufficiently tested in this report due 
to time constraints and guidance provided by our advisors on the impact factor of a reproducible 
framework. However, a framework capable of answering this question was constructed, 
motivated originally by the requirements of sufficiently testing our hypothesis. Specifically, it 
automated repeat NWM runs with differing parameter value sets. Performing this task manually 
within a cluster computing (CC) environment would require much repetition, and thus be 
impractical as perturbation numbers increased. Hence, development of a reproducible 
automated framework transcending CC arose from necessity. However, while this framework 
met our project needs, it was not customized for our particular use case. Instead, we designed 
our framework with a high level of abstraction, hoping to deliver a product capable of meeting 
the needs of the greater NWM/Weather Research and Forecasting-Hydro (WRF-Hydro) 
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modeling communities. Our team strived to create a tool that could be used by both novice and 
veteran users. 

2. Objectives and Scope 

After developing a hypothesis, we set out to test it by creating a scalable automated framework 
capable of simultaneously running numerous NWM simulations of different channel parameters. 
To accomplish this we developed a perturbation engine, DJS, and an ensemble generator, to 
form the framework. We tested the framework’s functionality and computational performance 
on a watershed in Pocono, Pennsylvania, an uncalibrated domain obtained from the National 
Center for Atmospheric Research (NCAR). This watershed includes both urbanization areas and 
reservoirs. Initially, we had planned to evaluate our hypothesis on a more idealized domain, 
without urbanized features and lakes, but this was not possible as the additional features pushed 
us beyond our initial scope. However, this report’s impact was not diminished, as a higher impact 
was indicated both by National Water Center (NWC) staff and our theme leaders, in developing 
a reproducible, open-source framework that can run concurrent NWM simulations. Thus, we 
ranked development and testing our framework on NWM v2.0 a higher priority. Specifically, the 
frameworks module, DJS, is capable of running all publicly available NWM versions and thus 
can be used to run NWM v1.2 on domains subset, for example, using the CUAHSI subsetter 
[1], and all other compatible NWM v2.0 domains.  

3. Methodology  

In this section we first elaborate the updated channel geometry of NWM 2.0. Then we outline 
the forcings and case study area of our simulations. Continuing on, we describe the perturbation 
engine used to vary channel parameters. Following that, we explain the different elements of the 
DJS, and how these elements make the tasks of automating, managing, and executing numerous 
NWM simulations occur simultaneously. Finally, we outline our ensemble generators algorithmic 
process to statistically amalgamate numerous model simulations. 

3.1. NWM v2.0 Channel Formulation 

The newest operational National Water Model (NWM v2.0) uses regression-based equations 
[2] to set up channel geometry parameters of an idealized trapezoidal channel cross-section: 

𝑇𝑤 = 2.44 ∗ (𝐷𝐴)0.34  (1) 

𝐴 = 0.75 ∗ (𝐷𝐴)0.53   (2) 

where Tw is the bankfull elevation channel width (hereafter known as channel top width, in 
meters) and A is the channel cross-sectional area (in meters squared). The independent variable 
used to calculate Tw and A is DA, the upstream drainage area of the reach (in kilometers 
squared). coefficients and exponents in both equations (1) and (2) are empirically derived 
values based on regression fits over the contiguous U.S. (CONUS). Average bankfull channel 
depth, dregression (in meters), is calculated from Tw and A: 

𝑑𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝐴/𝑇𝑤   (3) 

To approximate trapezoidal channel depth, the NWM v2.0 models the bankfull channel depth 
by scaling dregression by a factor of 1.25: 

𝑑𝑚𝑜𝑑𝑒𝑙 = 1.25 ∗ 𝑑𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (4) 
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thus uniquely defining an isosceles trapezoidal channel cross-section with Tw, A and dmodel. The 
rest of the channel geometry parameters can therefore be calculated from the three 
aforementioned parameters: 

𝐵𝑤 = 2 ∗ 𝐴/(𝑑𝑚𝑜𝑑𝑒𝑙 − 𝑇𝑤) (5) 

𝑧 = (𝑇𝑤 − 𝐵𝑤)/(2 ∗ 𝑑𝑚𝑜𝑑𝑒𝑙) (6) 

where B is the channel bottom width (in meters) and z is the channel side-slope, defined as the 
ratio of run over rise.  

It is worth noting that although NWM v2.0’s method of establishing channel geometry 
parameters does not explicitly set up channel bottom width using channel top width, it does, in 
fact, effectively restrict the ratio of the channel bottom width and channel top width to be a 
fixed value of 0.6: 

𝐵𝑤 = 0.6 ∗ 𝑇𝑤 (7) 

A detailed derivation of equation (7) is available on the GitHub repository for this project, 
provided at the end of this document in the Supplementary Materials section. As of the writing 
of this report, all channel bottom widths were 60% of channel top widths, in the CONUS 
route link file.  

3.2. Forcing Data 

Hourly quarter-degree NLDAS 2 primary forcings were obtained from GES Disc for the 

temporal period of January 1st, 2017 to June 30th, 2018. These forcings were subset to our 
Pocono, PA domain using the simple subset wizard on the GES Disc website [3]. The variables, 
air temperature, incoming shortwave and longwave radiation, surface pressure, u and v wind 
speed, and liquid precipitation rate were used to force the model.  

3.3. Case Study Area 

Our test case, provided by NCAR, resides in northeastern Pennsylvania, specifically 
encapsulating the town and greater region of Pocono. This watershed consists of head water 
streams that have a total drainage area of 291 km2, maximum stream order of 5, and somewhat 
gently rolling topography (Figure 1). The watershed is dominated by forest and urbanization 
areas, and also contains lakes. There are two United States Geological Survey (USGS) streamflow 
gaging stations in the watershed: 01447720, Tobyhanna Creek near Blakeslee (located at the 
watershed outlet), and 01447680, Tunkhannock Creek near Long Pond, both in Pennsylvania, 
USA. In this study we compared NWM simulated streamflow, using our framework, versus the 
observed USGS gaging stations.  

3.4. Perturbation Engine 

Our perturbation engine produced new model parameter files (hereafter known as route link 
files) with perturbed channel parameters. This was accomplished by applying scalar values 
generated by Latin Hypercube Sampling (LHS) [4] to route link file parameters, for example 
channel bottom width. The user specifies the channel parameter(s) to perturb, and a scalar value 
range and number of samples for each parameter, as required by the LHS method. Then, input 
probability distributions for each parameter are stratified by dividing each cumulative curve into 
equal intervals (the number of intervals equal to the user-defined number of sample points). 
Finally, a sample point is randomly taken from each interval for each parameter while ensuring 
no two sample points share the same interval for any parameter. As opposed to a fully random 
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sampling methodology such as Monte Carlo, this methodology resulted in generating probability 
distribution for each parameter, using fewer number of sample points.  

 

Figure 1. Study Area, The Pocono Watershed in Pennsylvania, USA. 

Currently, the perturbation engine is capable of scaling the channel-related parameters relative 
to the default parameter values.  When one parameter value depends on another, the dependent 
parameter is also updated once the independent parameter value is perturbed, (e.g., when keeping 
the top width and cross section area of a trapezoidal channel constant, if the bottom width is 
changed, the side slope also is changed accordingly, to satisfy related geometry equations).  

Finally, corresponding input files containing target parameters are updated with new parameter 
values. These edited files are tagged with metadata (within their global variables list) to keep track 
of changes. The metadata contains changes made (i.e., scale values) and corresponding 
parameters, distinguishing between independent and dependent perturbed parameters.  

3.5. Dockerized Job Scheduler (DJS) 

Each DJS piece was designed to work independently. The DJS pieces are:  docker images; jobs; 
the domain linker, and the job scheduler. Put simply, the job scheduler generates a queue of jobs 
where each job contains the properties needed for the domain linker to properly link files across 
the filesystem which then are used by a deployed docker container to run an NWM instance. 

3.5.1. Docker Images 

One main hindrance of using models that distribute tasks across Central Processing Units 
(CPUs) and cluster compute nodes using interfaces like the Message Passing Interface (MPI), is 
software and operating system dependencies for compiling a given model. Docker is an open-
source, platform-independent, software-as-a-service alternative to classical Virtual Machine 
(VM) environments. Unlike traditional VMs, such as VirtualBox, Docker runs containers that 
use the user operating system’s native kernel, thus significantly reducing the size of each 
container, compared to VMs. This underlying architecture reduction drastically improves both 
container spin up time and process runtime within containers, allowing numerous containers to 
run in tandem. Docker containers are spun up from Docker images with each image constructed 
using a Docker file containing instructions for forming the image (i.e. install dependencies). 
Importantly, Docker images require existing images to be stacked on one another, thus making 
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it possible to create a base environment image containing, for example, precompiled 
dependencies that can be used by other images to easily create images of differing software 
versions. For these reasons, Docker was chosen as the model running environment within DJS. 
All images and Docker files created during the Summer Institute are housed on GitHub and 
Docker Hub (Refer to the Supplementary Materials section). 

With collaboration and reproducibility in mind, a set of Docker images were created for use with 
DJS. A base image containing all requirements for compiling the NWM was created based on 
version 3.10 of Alpine Linux [5], aptly named ‘aaraney/wrf-hydro_base’. This distribution was 
chosen to minimize overall container size. Images for v1.2, v2.0, and v2.1 beta of the NWM 
were created from the base image of each, with an overall image size of 274 megabytes (mb). 
Suitably named, ‘aaraney/nwm-djs’, each hads its own model versioning tag.  

3.5.2. Jobs 

The class Job tracks location of alternative domain files, with primary and replica domain 
directory locations. Each job object also contains container-related information upon 
execution. The class is used by the Job Scheduler within a queue data structure of job objects, 
described later in this chapter. 

3.5.3. Domain Linker 

The domain linker creates replica directories of a user input primary domain directory that 
contains all necessary model inputs prior to runtime. The linker also handles placing the 
perturbed domain file in its proper replica directory, once created. To save disk space, each file 
linked to a replica domain is created using a hard link. It should be noted that many file explorer 
systems (e.g., Finder, Windows Explorer) double count hard link sizes, providing erroneous 
information on disk space taken up.  

To avoid adjusting namelist files and to follow common WRF-Hydro file naming conventions, 
each perturbed input domain file is checked to identify its type, and link it with the appropriate 
name. Files provided by a user within the primary domain directory are also checked, and linked 
with conventional filenames to each replica domain, to follow standard file and directory naming 
conventions. 

3.5.4. Job Scheduler 

The task of spawning and tracking numerous jobs is handled by the Job Scheduler. This class 
object binds smaller pieces of DJS into a working unit, to form the main class a user would 
import and call to interact with the operational framework. The primary role of this module is 
to create a queue of jobs to be spawned once computational resources are available. That said, 
the maximum number of running jobs, the docker image to be used, the number of threads to 
allocate to each container, and the number of MPI processes each container launches are all set 
by the user as attributes in this module. For usage and further explanation, refer to the 
documentation on our GitHub repository link in the Supplementary Materials section. 

3.6. Ensemble Generator 

To test our hypothesis, that an ensemble average produced by perturbing channel parameters 
may yield a more accurate result in the case of extreme events, we developed the ensemble 
generator. First, it calculated any performance metrics sets chosen by the user (e.g, Nash–
Sutcliffe Efficiency (NSE), Percent Bias (PB), etc.) for given sets of simulated streamflow time 
series versus observed values (e.g., USGS streamflow data). Then, for every performance metric, 
each simulated time series was ranked, and scored against the others based on the difference 
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between their calculated performance metric and the theoretical perfect value for the respective 
metric (e.g., 1 for NSE, and 0 for PB). Next, using either default equal metric weights (all metrics 
provided are of equal influence) or user defined metric weights (e.g., NSE is of greater 
importance than PB), a weighted average final score was given to each simulation. Finally, this 
score was used to generate an ensemble weighted average of all simulations. 

4. Results 

To implement the perturbation engine, DJS, and ensemble generator, we set out to test and 
benchmark our tools on a HUC 8 watershed in northeastern Pennsylvania. Greater detail about 
this watershed can be found in the study area section. In this section, we present our test case 
ensemble model simulation results, the effects of extreme channel geometries (near-triangular 
and near-rectangular channel formulations), and DJS computational benchmarking results. Prior 
to simulating any results found below, we spun-up NWM for a period of one year (2017-2018) 
using NLDAS forcing data. Each subsequent model simulation in this report, with the exception 
of benchmarking simulations, was performed over a six-month period, from January 1st, 2018 to 
June 30th, 2018.  

4.1. Case Study: Parameter-Based Ensemble Outputs and Extreme Channel Geometries 

4.1.1. Introduction 

For the sake of simplicity, in this case study we only perturbed the channel bottom width 
parameter. Given that channel top width and channel cross section area values are both obtained 
from regression-based equations, as outlined in the NWM v2.0 Channel Formulation section, 
we decided to keep the channel top width and channel cross section area constant and adjust the 
channel side slope as a dependent parameter, to conserve the geometry for the trapezoidal 
channel. The NWM simulations were created by running 12 different perturbed runs: (1) Default 
bottom width, (2) A near triangular channel (Bw * 0.0001), and (3) A near rectangular channel 
(Bw * 1.6), (4-12) bottom width multiplied by near-randomly chosen scales, using the LHS 
method (scale range: 0.01-1.6). Added to these 12 runs we generated an ensemble weighted 
average of all simulations (excluding extreme channel cases: near-triangular and near-
rectangular).  

4.1.2. Findings 

Figure 2 shows the results for (a) the extreme channel cases simulations, and (b) the ensemble 
weighted average for a 3-day subset (February 25-28,  2018) of our 6-month simulation period, 
to better show differences between simulations. Figure 2.a shows that, generally, the extreme 
cases of near-triangular and near-rectangular channels comprised the lower and upper bounds 
of streamflow simulations. During peak periods (in the rising limbs of hydrograph) the near-
triangular channel predicted the highest streamflow values among all simulations, although it was 
the lowest in the falling limb of hydrograph. The near-rectangular channel, however, performed 
exactly the reverse:  it was generally the lowest during the rising limb and highest during the 
falling limb. The time to peak was always smallest for the near-triangular channel while largest 
for the near-rectangular channel. These results were expected, as a narrow channel (e.g., 
triangular channel) yields a faster flow while a wide, shallow channel (i.e., rectangular channel) 
produces a slower flow, given the additional friction between the water and the stream-wetted 
perimeter.  Figure 2.b shows the ensemble weighted average hydrograph having similar 
characteristics to the default simulation. This was because all perturbed simulations performed 
similarly, as channel bottom width was the only parameter perturbed, and the cross-section area 
of the channel and top width were kept constant. Thus, the results did not vary greatly from one 
another and consequently, the weighted average ensemble of these members did not reveal a 
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more accurate result. However, this can be attributed to use of an uncalibrated domain, therefore 
limiting the siggnificance of our simulated results when compared to observed. 

  

Figure 2.  Streamflow observations and NWM simulations at the USGS station 01447720, (a) Extreme Channel 
Cases (b)  Ensemble Weighted Average. (Focused on a 3-day subset of simulation period to better show differences 

between simulations) 

4.2 DJS Benchmarking 

A Dell Precision T7610 workstation housing two ten core Intel® Xeon® E5-2670 v2 processors 
clocked at 2.50 GHz and 64 GB of DDR3 RAM operating on version 18.04 LTS Bionic of 
Ubuntu was used to perform benchmarking.  Several Docker containers and MPI process 
combinations were formulated to determine the scalability and robustness of our framework, 
based on runtime.  To limit influence of potential bottlenecks introduced by Docker’s resource 
management system, each container was given access to all theoretical CPU threads, in our case 
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40. Table 1 outlines the aforementioned combinations. Although data read and write time should 
not contribute greatly to run time, it should be noted a Seagate 1TB external hard drive using 
the ext4 filesystem and USB 3.0 was used for all simulations. Each simulation consisted of a 31-
day run period, using NLDAS forcing and restarts provided by a previous model spin-up 
simulation. The default Route_link.nc domain file, which contains all channel-based parameters, 
was used in place of alternative perturbed files.  

Table 1. DJS benchmark cases simulated for a one-month period with NLDAS forcings 

 

 

 

 

 

Figure 3 displays runtime results for each simulation, where the container number was equal to 
the number of NWM models running concurrently.  Results of these simulations revealed three 
things. First, a hardware plateau, once the number of active containers multiplied by the number 
of MPI processes became greater than the theoretical thread count. This runtime hindrance can 
be observed in cases [8, 4] and [8, 5] in figure 3. The three right-most cases in figure 3, [12, 3], 
[6, 4] and [12, 4] reveal this point most clearly. Case [6, 4] differs from all cases in that 12 NWM 
simulations were completed, however the number of containers running concurrently was 
limited to six containers running four MPI processes. The importance of benchmarking a given 
system is shown in case [12, 3] which performed on par with all other cases running a lower 
number of containers, and adhered to the active container times MPI process rule. Second, the 
input and output runtime effects caused by writing each hourly land surface model output to 
disk were most clear in the [1, 4] and [12, 3] cases, where runtimes of one simulation were 
marginally different despite vastly different numbers of concurrent simulations.   Third, and 
most important, the robust scalability of DJS was displayed in these tests. Specifically, when the 
number of active containers times the number of MPI processes remained at or below the 
maximum number of CPU threads, the runtime between a single model run and, in our case, 
twelve model runs remained similar. 

5. Conclusion 

This research set out to create a scalable, automated framework capable of running numerous 
NWM simulations with different channel parameters simultaneously building and utlizing open 
source programming languages. Our hope was to benefit the greater WRF-Hydro/NWM 
community. Our tools; the perturbation engine, DJS, and ensemble generator, all exist as 
modular units that when used together, have the potential of asking countless scientific 
questions. Despite our limited findings regarding our test case, Pocono, PA, we believe 
perturbing channel parameters on a calibrated domain will produce findings that will be much 
more compelling. We hope the deliverables offered in this report lay the foundation for both 
veteran and novice modelers to contribute to, and improve the nation’s hydrological model.  

 

Active 
Containers 
Count 

1 1 2 2 4 4 8 8 12 12 12 total limited 
to 6 containers 

MPI Process 
Count 

4 8 4 8 4 8 4 5 3 4 4 
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Figure 3.  Runtimes for benchmarking Container-MPI combinations 

 

Supplementary Materials:  GitHub, Dockerhub, and Hydroshare repository of models and 
codes developed for this project are available online at: https://github.com/aaraney/NWM-
Docker-Ensemble-Framework, http://Hub.docker.com/u/aaraney, and 
https://www.hydroshare.org/user/4606/, respectively.  
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Abstract: Due to factors such as data availability and physical attributes, models require modular 
components for representing individual hydrologic processes, from regional to continental 
scales. Therefore, the need for a common procedure within the hydrologic field to evaluate 
model output based on parameter sensitivities and uncertainties compared to performance 
metrics (i.e. objective functions) is evident. We developed a reproducible workflow for 
evaluating hydrologic models, to objectively evaluate model output as a function of parameter 
choice, using both numerical and visualization techniques. The workflow was implemented using 
case studies provided by Fellows of the National Water Center Innovators Program: Summer 
Institute 2019. The resulting output can be reproduced and visualized using Jupyter notebooks 
within a community GitHub code repository (https://github.com/ksemmendinger/ 
Hydro_Parameter_Sensitivity_Visuals). Model parameter sensitivity was evaluated using various 
global sensitivity indices (i.e. Sobol, Delta, R2) and Bayesian theory. Uncertainty in parameter 
spaces was quantified, to highlight the impact of unreliable input data on model output. Model 
parameter sensitivities and uncertainties were evaluated numerically and visually to provide a 
comprehensive outlook on their model output impact. For each case study, we provide a 
summary and an interpretation of workflow results. Our workflow can be integrated into 
hydrologic modeling frameworks for objective modular model and parameter set evaluations, 
based on a data-driven approach for model selection. 

 

 
1. Motivation 
 
Conceptual and mathematical models are used to represent complex and unconstrained 
hydrologic environments [1]. Difficulties arise in model performance evaluation due to multiple 
interpretations, differing mathematical descriptions and uncertainty present in the input and 
parameter datasets [2, 3]. Parameter values often are not a direct physical interpretation and rarely 
can be measured in the field. Therefore, models are calibrated using objective functions (e.g. 
Nash-Sutcliffe Efficiency [NSE], root-mean-square error [RMSE], peak discharge) and the ’best’ 
model structure and parameter sets are often selected [4]. To effectively model hydrology it is 
necessary to understand how model output is impacted by each parameter, and to focus model 
calibration on decreasing uncertainties of more influential parameters. The hydrologic modeling 
community needs common frameworks organizing development of an open source multi-
criteria approach that is reproducible, adaptable and transferable, for evaluating model parameter 

https://github.com/ksemmendinger/%20Hydro_Parameter_Sensitivity_Visuals
https://github.com/ksemmendinger/%20Hydro_Parameter_Sensitivity_Visuals
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sensitivities and uncertainties to advance computational hydrology across disciplines and 
platforms [2,4,5].  
 
2. Objectives and Scope 
  
The study objective was to develop an adaptable and reproducible workflow for evaluating 
hydrologic model parameter sensitivities and uncertainties. To achieve the objective the 
workflow needed to impartially evaluate model output as a function of parameter choice, using 
both numerical and visualization techniques. This paper details workflow implementation and 
sensitivity analyses on eleven input parameters for Storm Water Management Model (SWMM) 
simulated streamflow. Visualization techniques are included in this paper for one objective 
function; however, visuals for five additional objective functions are available via our GitHub 
repository (refer to Supplementary Materials). Additional case studies, provided by Fellows of 
the National Water Center Innovators Program: Summer Institute 2019, also are included within 
our GitHub repository. All Python/R scripts are included in the GitHub repository along with 
an executable Jupyter Notebook for each case study. The range in model outputs and objective 
functions for each case study directly highlights the reproducibility of our workflow, as each case 
study has different parameter sets, model configurations and outputs. The workflow was 
developed for easy integration into hydrologic modeling frameworks (e.g. evaluation of the 
NWM) for objective modular model and parameter scheme evaluations, based on a data-driven 
model selection approach. 
 
3. Previous Studies 
 
Previous studies have called for adaptation of reproducibility and transparency within hydrology 
to add credibility to scientific claims. Research should be rooted in evidence supporting the 
methodology applied, data acquired, data analysis and interpretation of results and outcomes [6]. 
Advancements in how we disseminate information should be incorporated into hydrologic 
modeling frameworks, by including tools that will document and publish computational 
workflow and all associated digital objects [5, 7]. It is assumed reproducibility and scientific 
provenance, a digital record of data and methods used to achieve results, will be key review 
criterion for future geoscience publications [5]. Gil et al. [5] introduces the Geoscience Paper of 
the Future concept, with a best practice requiring authors to make data, software and methods 
openly accessible, citable, and well documented. Challenges to reproducibility include technical 
barriers, limited documentation of the research to be replicated, and potentially complex 
requirements for software packaging, installation and execution [7]. 
 
While sensitivity analyses have been implemented across various hydrologic models, a 
comprehensive and adaptable methodology has yet to be adopted in common practice. Many 
packages are available for calculating objective functions (e.g. the R package hydroGOF, 
https://www.rdocumentation.org/packages/hydroGOF) and implementing sensitivity analyses 
(e.g. the python library SALib, https://salib.readthedocs.io/en/latest/), but rarely do these 
packages communicate with each other. Future research should focus on integrating existing 
coding packages within universal workflows, for robust hydrologic model analyses.  
 
4. Methodology 
 
The workflow was developed to be adaptable and reproducible for applications across various 
hydrologic models, and their respective outputs or objective functions (i.e. performance metrics) 
of interest. The workflow was organized to be easily integrated with the National Water Center 
(NWC) Water Resources Evaluation Service (WRES, v1.8) tool that calculates metrics using 
hydrologic model outputs and United States Geological Survey (USGS) stream gauge data. 
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WRES is under development, backed by .xml files, and calculates metrics from single-value 
forecasts, ensemble forecasts and observations/simulations. The WRES-calculated metrics can 
be used as objective functions for multiple parameter sensitivity and uncertainty calculations 
performed in our workflow. All analyses incorporated into the resulting workflow should 
encompass any user-defined objective function and allow for testing new hydrologic evaluation 
metrics. The remainder of this section explains different sensitivity and uncertainty methods 
incorporated into the workflow, based on user-defined or calculated objective functions. 

4.1 Parameter Sensitivity and Uncertainty Analyses 

One method integrated into the workflow was Approximate Bayesian Computation (ABC), 
which represents the combination of model parameter values that maximize the probability of 
representing the observed data. ABC applies Bayesian theory to parameter spaces to estimate 
posterior distributions of model parameters. ABC is advantageous because it bypasses 
calculating the likelihood function, by using model simulations compared to observed data [3,8-
10]. The steps to compute ABC are as follows.  
1) Calculate observed data’s statistics (e.g. mean, standard deviation) and choose model-specific 

objective functions (e.g. NSE);  
2) Assume a uniform sampling interval for the parameter space. Draw a total of n parameters 

from prior data, and simulate the model for each parameter point, producing n sequences of 
simulated data.  

3) Calculate objective functions for each simulated data sequence  
4) Determine the distance between observed and simulated transition frequencies for all 

parameter points. Remove parameter points beyond a user-specified tolerance interval (e.g. 

NSE ≥ 0.0), to approximate samples from the posterior distribution.  
5) Estimate posterior distribution with the parameter points within the tolerance interval [9, 

10].  
 
Three sensitivity analyses are incorporated into the workflow: a variance-based sensitivity 
analysis; a moment-independent sensitivity analysis, and an ordinary least squares regression. The 
Sobol method [11] is a variance-based global sensitivity analysis that yields first-order, second-
order, and total-order sensitivity indices. Sobol’s method can effectively handle nonlinear 
responses, and it measures effects of interactions within non-additive systems. It decomposes 
the variance of model output into fractions that can be attributed to inputs or sets of inputs. The 
first-order sensitivity index (i.e. main effect index) quantifies parameter impact on model output 
variance by averaging variations in other input parameters. The second-order sensitivity index 
decomposes model variance by parameter interactions with one another. The total-order 
sensitivity index (i.e. total effect index) measures the contribution each parameter had on model 
output across the first-order index and all higher-order indices. Our workflow employs the 
Saltelli scheme [12, 13], which allows for the calculation of the first-order, second-order, and 
total-order sensitivity indices with fewer model runs than a traditional approach. However, since 
the calculation of Sobol second-order indices requires N * (2K + 2) model runs (where N is preset 
model runs and K is number of parameters) [13], some models may be too computationally 
expensive to run with multiple input parameters. Consequently, we included two additional 
sensitivity analyses that have no minimum number of model runs. 
 
The Delta index [14-16] is a moment-independent global sensitivity analysis. While less robust 
than indices returned by variance-based sensitivity analysis, moment-independent sensitivity 
analysis is a popular technique, due to its computational efficiency and insensitivity to dependent 
parameters [17]. The Delta sensitivity analysis searches for parameters with the greatest impact 
on the probability density function of model output. Delta indices capture non-linear and non-
monotonic parameter-output dynamics. Finally, the ordinary least squares (OLS) regression 
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yields an R2 coefficient that quantifies the linear effects of model input parameters on model 
output variance. OLS regressions have long been employed for model sensitivity analyses, and 
assume explicit interaction between model output and any given parameter [18-20]. 

4.2 Visualization Workflow 

The reproducible and adaptable visualization workflow (Figure 1) handles input files of 
parameter sets, model simulations, observed data, and objective functions (e.g. NSE). The 
necessary input formats are a: 1) [n x K] matrix where n rows are the models/indexes and m 
columns are the K parameters for each model configuration; 2) [n x t] matrix where n rows are 
the models/indexes and t columns are the model simulations at each temporal interval; 3) [1 x t] 
matrix where t is the observed data at each temporal interval, and 4) [n x S] matrix where n rows 
are the model/index and S columns are the S number of objective functions of interest. Coding 
packages are available for calculating common objective functions (see Section 3) and we used 
R package hydroGOF. Additionally, the WRES tool can be used to calculate objective functions 
for the various model parameter sensitivity and uncertainty visualization approaches. 
 
The workflow is modular, allowing users to run only scripts applicable to their parameter sets, 
model outputs, and objective functions. Moving from left to right across the different modular 
components in Figure 1, the ABC analysis provides a priori and posteriori parameter distribution 
plots. The workflow saves text files of all models that have parameter sets within a user specified 

tolerance interval (e.g. NSE ≥ 0.0) and high-resolution figures of the resulting histograms, 
cumulative distribution functions (CDFs) and probability density functions (pdfs). ABC output 
is intended to highlight parameter distributions as one function/role of the objective functions 
of interest. The user can alter the code to consider any objective function and tolerance interval. 
To evaluate model performance, the workflow plots observation datasets (i.e. historical time 
series) and magnitude percentile plots, comparing frequency distributions of the modeled versus 
observed data magnitude. The next workflow module is the delta and OLS (R2) sensitivity 
analyses, which produce scatterplots of the various user-specified objective functions versus the 
different model parameters. This allows the user to visualize single parameter impacts on the 
objective functions. Next, portrait and spider plots summarize OLS and Delta sensitivity analysis 
of each parameter, for single-to-multiple objective functions. A Sobol second-order, and total-
order sensitivity analysis is specific for Saltelli parameter sampling schemes, and may not be 
appropriate for all models due to computational limitations or large parameter spaces. Sobol 
provides a global sensitivity analysis and is advantageous for observing first-order, second-order 
and total-order parameter interactions and their impacts on objective functions. 
 
5. Results 

5.1 Case Study 0: SWMM Streamflow Simulation of Fall Creek Watershed, NY 
 
The Fall Creek watershed is a 325 km2 basin, located near Ithaca, New York. The Fall Creek 
watershed was selected for Case Study 0 domain area because all forcing data and parameter 
ranges were readily available. SWMM was selected as the hydrological model because it is 
computationally inexpensive and has the ability to complete a model run in approximately four 
seconds. Additional information regarding SWMM models and their configurations is available 
in our GitHub respository. To complete Sobol, Delta, and OLS sensitivity analyses on SWMM 
simulated streamflow to input parameters, we employed the Saltelli sampling scheme to create 
24,000 unique parameter sets. Eleven parameters, shown in Table 1, were sampled for the 
sensitivity analysis.  
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Figure 1. Workflow illustrating the various datasets and analysis for visualization of parameter sensitivities and uncertainties 
 

 

Table 1. The eleven parameters sampled in the SWMM sensitivity analysis 

Parameter Description 

w Basin width 

n_imperv Impervious cover Manning’s roughness coefficient 

n_perv Pervious cover Manning’s roughness coefficient 

s_imperv Impervious cover storage volume 

s_perv Pervious cover storage volume 

k_sat Hydraulic conductivity 

per_routed Percent routed to pervious cover 

cmelt Snow melt coefficient 

Tb Base temperature 

A1 Groundwater flow coefficient 

B1 Groundwater flow exponent 

 
 
Each parameter set was run through the SWMM from January 1, 2013 through June 30, 2013, 
and the simulated streamflow time series was extracted. Simulated streamflow was compared to 
USGS stream gauge data (https://waterdata.usgs.gov/nwis/uv?04234000). Six objective 
functions were calculated and used as model performance metrics using the R hydroGOF 
package [21]: mean absolute error (MAE); mean error (ME); mean squared error (MSE); Nash-
Sutcliff efficiency (NSE); percent bias (pbias), and root mean squared error (RMSE). Section 5.2 
visualized the complete workflow with NSE as the objective function. Refer to the GitHub 
repository (link at end of chapter) for a complete analysis across all objective funtions and a 
replication of all visualizations.  
  
5.2 Workflow Vizaulizations and Outcomes 

Workflow numeric output includes Sobol first-order, second-order, and total-order sensitivity 
indices, as well as Delta and R2 sensitivity indices. These files are saved in the output directory, 
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together with the figures shown below. The numeric output files can be found in our GitHub 
repository. In a numerical sensitivity analysis, a larger sensitivity index implies greater influence 
of input parameter over model output. For the NSE objective function of Case Study 0, the 
Sobol, Delta, and R2 sensitivity indices, together with their corresponding confidence intervals, 
are shown in Table 2. 

Table 2. The Sobol first-order (S1), S1 Confidence Interval (CI), Sobol total-order (ST), ST CI, Delta, Delta CI, and R2 

sensitivity indices for the NSE objective function 

 

Parameter S1 S1 CI ST ST CI Delta Delta CI R2 

w 0.00932451 0.01024303 0.01116858 0.00425999 0.05726384 0.003195 0.38168023 

n_imperv 0 0.01407207 0.02102163 0.00297597 0.06736131 0.00219677 0.29685502 

n_perv 0.00066735 0.0118365 0.02635968 0.0154946 0.06141614 0.00468541 0.30461684 

s_imperv 0.00088842 0.00138211 0.00019754 4.54E-05 0.05762623 0.00354774 0.30196962 

s_perv 0.00441332 0.00388486 0.0022433 0.00165579 0.05347048 0.00343368 0.30710408 

k_sat 0.05411055 0.03422148 0.08045932 0.04190596 0.0706289 0.00597163 0.27664867 

per_routed 0.02830262 0.02034452 0.04283429 0.00740148 0.23760169 0.00545487 0.25279263 

cmelt 0.02640971 0.03276811 0.07950454 0.03096019 0.06506388 0.00326249 0.34164728 

Tb 0.02902564 0.02758362 0.07529993 0.02679876 0.05676743 0.00457267 0.01074236 

A1 0.48937156 0.06469653 0.57903878 0.07151498 0.29388964 0.00737714 0.66406945 

B1 0.2218755 0.05058228 0.26088142 0.03282531 0.16087131 0.00373687 0.27357454 

 
Since the objective of this study was to visualize model parameter sensitivity, in this section we 
describe the figures created to visualize model output frequency, distribution, and sensitivity 
indices for each SWMM input parameter and the NSE objective function. We supply some 
inferences and figures interpretations, but model performance evaluation was not the focus here. 
 
Comprehensive sensitivity analyses require large numbers of model runs. This results in 
overlapping plots, often with thousands of time series. The overlapping historical and simulation 
data time series provides little insight into the frequency of various model output values. Figure 
2 shows a historical data time series together with a frequency magnitude percentile curve. 
Magnitude percentile curves allow interpretation of more- and less-frequent observation values 
by grouping individual time series into percentile ranges. As shown in Figure 2 for Case Study 
0, the majority of simulated streamflow values fall below the historical data, implying SWMM 
tends to underestimate streamflow, especially in higher flow (80th-100th percentile) events. 



National Water Center Summer Institute 2019 

72 

 

 

                 

Figure 2.  (a) A time series of historical streamflow data (cms/hour) (b) along with a magnitude percentile plot showing the spread 
and frequency of SWMM simulated streamflow compared to the historical observations (cms/hour). 

 

ABC was implemented with a tolerance specified at NSE ≥ 0.0 and workflow results were 
visualized as histograms, CDFs and pdfs. The histograms illustrate the frequency distributions 
of parameter sets constrained by ABC specified tolerances (Figure 3[a]). Changing the tolerance 
will adjust the frequency distributions of parameters as a function of user-specified objective 
functions. CDFs (see GitHub repository) and pdfs (Figure 3[b]) provide the user with additional 
visualizations of constrained parameter sets based on ABC. Based on Figure 3, the SWMM 
model configurations with the most positive NSE values have A1 parameters equaling values 
near zero. One might conclude the A1 parameter should be sampled from a constrained range 
of values, skewed toward zero. Constraining A1 may adjust the histograms, CDFs and pdfs of 
other parameters depending on the user-specified objective function and tolerance interval. 
However, it is impossible to conclude this without understanding the relationships and 
dependencies between the various model parameters. Additional sensitivity analyses are required 
to adequately describe the parameter interactions within hydrologic models.   

(a) 

(b) 



National Water Center Summer Institute 2019 

73 
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(b) 
 

Figure 3. (a) Histograms (bins = 100) and (b) pdfs illustrating frequency of the modeled discharge (Output) versus the different 

SWMM model parameters. Approximate Bayesian computation (ABC) applied for NSE ≥ 0.0 is shown. 
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Figure 4 illustrates scatterplots of objective function values versus parameter values. A 
correlation between the two directly corresponded to the linear relationship indicated by the R2 
value from the OLS sensitivity analysis. For Cast Study 0, it can be inferred that A1 and B1 
groundwater coefficients had the strongest linear impacts on the objective function (i.e. NSE). 
A spider plot, shown in Figure 5, illustrates the difference in sensitivity index magnitudes across 
model parameters for each objective function and sensitivity analysis. The results reinforce OLS 
regression results of A1 and B1 groundwater coefficients as the most impactful on model output. 
 

 

Figure 4. Scatterplots highlighting linear influences of input parameters on NSE objective function 
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Figure 5. Spider plot illustrating magnitudes of the OLS, Sobol (S1, ST) and delta sensitivity indices for NSE and each SWMM 
input parameter 
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A radial convergence plot (RCP), shown in Figure 6, was produced from the Sobol sensitivity 
analysis. RCPs visualize not only first-order and total-order sensitivity for each parameter, but 
also second-order interactions between model parameters. Large first-order indices indicate the 
parameter is influential over model output or objective function. Small first-order indices 
indicate the parameter is unimportant in model output, thus allowing model simplification. 
Second-order indices describe how much interactions between two parameters influence model 
output, and total-order indices describe how much the sum of all parameter interactions 
influences model output. 

 

Figure 6. A radial convergence plot demonstrating the first-order (light blue circle), second-order (dark blue lines), and total-order 
(dark blue circle border) Sobol indices for NSE objective function 
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The following visuals, produced by the workflow, are portrait plots (Figure 7). Portrait plots 
allow direct comparison of all objective functions and parameters for each sensitivity analysis. 
In the plots below, darker green indicates higher objective function sensitivity to model 
parameter value. While several parameters seem to have linear impact on objective functions in 
the OLS regression, for Sobol and Delta sensitivity analyses, A1 and B1 groundwater parameters 
show the most significant influence over the various objective function values. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
Figure 7. Portrait plots showing the (a) OLS, (b) Delta, (c) Sobol first-order, and (d) Sobol total-order sensitivity indices with 

respect to each combination of objective function and model parameter. 

 
 
The workflow is organized modularly, to incorporate additional sensitivity analyses and 
visualization techniques. Future work could further develop the process to allow parameter 
sampling iteration based on the various sensitivity analyses results. 
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6. Conclusion 

In this study we developed an easily adaptable and transferrable workflow, to visualize parameter 
sensitivities and uncertainties for hydrologic models. This workflow was implemented for 
multiple case studies, validating its applicability across several hydrologic research fields. 
Numeric and visual workflow output can aid hydrologic modelers with model selection, 
simplification, and parameter definition. Additionally, the workflow can be integrated with the 
existing model performance metric tool, WRES, used by the NWC. Due to the modular 
workflow setup there is potential to expand on sensitivity analyses and visualization techniques, 
based on user needs. We hope to see an adaptation of our workflow integrated into operational 
use for evaluation of the NWM, to meet NWC needs as they move toward a modular set-up of 
streamflow analysis across various temporal and spatial scales. 
 

Supplementary Materials: Code repository and reproducible case study visualizations available 
at: https://github.com/ksemmendinger/Hydro_Parameter_Sensitivity_Visuals 
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