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Wetlands are a vital ecosystem that provide ecological habitat, improve water quality, and ease 
flood and drought severity. As rapid development and climate change continue to threaten 
wetland health, it is increasingly important to build and share tools for wetland management and 
conservation. Tools to identify wetlands with greater efficiency than traditional manual 
processes are particularly valuable. The National Wetland Inventory (NWI) recognizes this need 
and is working with the wetland science community to develop an updated, semi-automated 
wetland mapping workflow. Arc Hydro’s Wetland Identification Model (WIM) is a candidate 
toolset to meet this goal. 

Method and Infrastructure  

While there are many types of wetlands, all can be identified by common features, including the 
presence of hydrologic conditions that inundate the area, vegetation adapted for life in saturated 
soil conditions, and hydric soils. Remote sensing data offer new opportunities to observe these 
patterns at varying scales. LiDAR DEMs are particularly well-suited to modeling hydrologic drivers 
of wetland formation given their recent collection dates, wide availability, and high spatial 
resolution. Many studies have shown the ability of DEM derivatives to model flow convergence 
and act as proxies for near-surface soil moisture (e.g., Lang et al., 2013; Lang & McCarty, 2014; 
Millard & Richardson, 2013; Millard & Richardson, 2015; O'Neil et al., 2018). 

WIM, implemented as Arc Hydro tools for 
ArcGIS Pro (Figure 1), is an automated 
framework for identifying likely wetlands using 
machine learning and user-specified predictor 
variables. The intended WIM workflow is:  

 

Figure 2 WIM Workflow 

 

Figure 1 WIM Arc Hydro tools for ArcGIS Pro 3+ 
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generate predictor variables, train and apply a Random Forests model (Breiman, 2001), and 
assess accuracy (Figure 2). In its baseline implementation, WIM calculates LiDAR-derived 
hydrologic drivers of wetland formation as predictor variables. Required input data are a high‐
resolution DEM, surface water data, and ground truth wetland coverage for a subset area to be 
used to train and assess the model. WIM outputs are wetland predictions and an accuracy report. 
WIM is designed to be flexible, allowing users to modify predictor variables, classify multiple 
wetland and nonwetland classes, and configure random forest model parameters. See below for 
highlights of the WIM component. 

 

After applying smoothing to the input DEM, WIM automates the calculation of Mean Curvature, 
Topographic Wetness Index, and Depth-to-Water Index rasters (Figure 3). Calculations employ 
adaptive neighborhoods to capture hydrologic patterns at varying scales. The adaptive 
neighborhoods method uses varying window sizes to calculate curvature and slope, changing the 
window size based on local topographic variability.  

 

Figure 3 Topographic Predictor Variables 
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These baseline predictor variables are intended to be a starting point for wetland identification 

where the model relies primarily on high-resolution and widely available elevation data. 

However, users may incorporate additional vegetation and landcover information to capture a 

more robust set of wetland characteristics. WIM accepts additional predictor variables, as 

categorical or continuous data, in the TIFF raster format. 

WIM produces Random Forest predictions in two formats: hard classifications where output 

raster cells are assigned a target classification, and classification probabilities where raster cells 

are assigned a probability of belonging to a target classification (Figure 4).  

 
Figure 4 WIM Results formatted as hard classifications and classification probabilities 

 

Results and Conclusion 

The original WIM workflow, including the effectiveness of the default topographic predictor 

variables, was developed through three peer-reviewed publications (O’Neil et al., 2018, O’Neil et 

al., 2019, O’Neil et al., 2020). After calibration for four geographic regions in Virginia using a rich 

ground truth dataset of jurisdictionally confirmed wetlands, WIM was able to identify 80‐90% of 

true wetlands across the sites. Wetland prediction precision varied from 22 to 69%, revealing a 



tendency to overpredict wetlands when using topographic inputs alone. Overall, the results 

suggest strong potential for WIM to support wetland delineation, but users must leverage the 

configurable components to develop best-performing models in their areas of interest. Like most 

modeling outputs, WIM outputs, cannot replace on-the-ground surveying and manual analyses. 

Instead, WIM outputs are intended to streamline and guide manual wetland mapping.  

 

Since its implementation in the Arc Hydro software, the applicability of WIM to various use cases 

has been evaluated by Esri users and through collaborative research efforts. We are grateful to 

our collaborators within the NWI and its New Mapping Technologies working group for helping 

us to improve WIM and make it an impactful tool for wetland scientists. We hope that WIM can 

act as a user-friendly and reliable computational engine for ongoing wetland identification 

research. 

Additional Resources  

Install Arc Hydro for Pro 3+ to use the WIM tools and read more about the recent updates to 

WIM here. 

Additional details on WIM functionality and demo are detailed in this recent Esri webinar. 

Contact the Arc Hydro team through Esri Community or email Gina directly at goneil@esri.com. 
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