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Preface   
The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is a non-
profit organization of more than 130 member institutions and provides programs and services which 
the advancement of interdisciplinary water science. The Office of Water Prediction of the NOAA 
National Weather Service (NWS) established the National Water Center (NWC) on the Tuscaloosa 
campus of the University of Alabama to serve as the U.S. center for water forecast services, in 
partnership with other federal agencies. The NWS, in partnership with CUAHSI, established in 2015 
the National Water Center Innovators Program to engage the academic community in research to 
advance the mission of the National Water Center. 

The key activity of the Innovators Program is a seven-week Summer Institute. The Summer Institute 
is a residential program at the National Water Center which brings graduate students and senior 
academic faculty or federal scientists (collectively called theme leaders) together with NWC staff and 
other senior scientists to conduct group projects that involve rapid prototyping of new ideas focused 
on the National Model, which became operational in August 2017. The intent is to create an 
innovation incubator where students from many universities can exchange ideas and advance concepts 
that, although developed over a short timeframe and study areas, are illustrative of issues that affect 
the functioning of the National Water Model. This year’s Summer Institute was held June 11-July 27, 
2018 and involved 23 graduate students from 18 universities (Figure 1). 

 
Figure 1. The affiliations of the students, theme leaders, and course coordinators who participated in the National Water Center Summer 

Innovators Program Summer Institute 2018.  

The first week of the Summer Institute focused on introducing the students to the 2018 Summer 
Institute themes and to the National Water Model. The students and theme leaders participated in 
team formation activities, project brainstorming sessions, and data management training sessions. 
Additional exposure to the nation’s water challenges were provided through presentations from theme 
leaders on topics including flooding in the Lower Rio Grande Valley, the importance of groundwater-
surface water exchanges in the Northern High Plains, flood mapping techniques used after Hurricane 
Harvey, channel routing, crowdsourcing data, data assimilation, real-time flood forecasting, and 
computational advancements. The theme leaders had a wide range of expertise to broaden the 
student’s knowledge of water resource challenges. 
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The 2018 Summer Institute themes and theme leaders included:  
● The ground and surface water interaction theme was led by Joseph Hughes of U.S. Geological 

Survey (USGS) and Dave Steward of North Dakota State University. Additional technical 
support for this theme was supported by Paul Barlow, Bill Cunningham, Wes Zell, and Ward 
Sanford of the USGS. 

● The hyper-resolution modeling theme was led by Fred Ogden of the National Water Center 
and the University of Wyoming, Jude Benavides of the University of Texas Rio Grande Valley, 
and Sarah Praskievicz of the University of Alabama.  

● The computational aspects of the National Water Model (NWM) and citizen science data 
themes were led by Ehab Meselhe of The Water Institute of the Gulf and Tulane University, 
Chris Lowry of The State University of New York at Buffalo, Kyle Mandli of Columbia 
University, and Sagy Cohen of the University of Alabama.  

Two Student Coordinators helped with organization and execution of the projects: Lauren Grimley 
from the University of Iowa, and Fernando Aristizabal from the University of Florida. Danielle 
Tijerina of CUAHSI assisted the course coordinators in the organization of the Summer Institute. 
Several National Water Center staff provided guidance for projects including Ed Clark, Trey Flowers, 
Fernando Salas, and Nels Frazier.  

At the end of the first week of the Summer Institute, the students were led by Martin Briggs of the 
USGS in fieldwork focused on geophysical methods to investigate groundwater-surface water 
exchanges. In addition, Sarah Praskievicz demonstrated operation of a high precision survey-grade 
GPS and Neil Moss from the Alabama Geological Survey discussed groundwater flows specific to 
Alabama. Whitney Henson of the National Water Center gave a presentation to inform the students 
of how data can inform flood emergency response units. Dave Gochis and others at National Center 
of Atmospheric Research (NCAR) provided guidance and information relevant to the core structure 
of the National Water Model. Steve Turnbull and Nawa Pradhan of the U.S. Army Corps of Engineers, 
Engineer and Research and Development Center led a two-day GSSHA modeling workshop. Bob 
Steinke of the University of Wyoming let a two-day ADHydro modeling workshop and continued to 
provide technical support to the hyper-resolution modeling theme. Additional support to the theme 
of Citizen Science data was provided by Ben Ruddell of Northern Arizona University. Training in data 
management and data analysis was provided by Dave Blodgett of USGS and Tony Castronova of 
CUAHSI.  

It can be appreciated that an activity of this magnitude involves a great deal of organization. Jerad 
Bales, Emily Clark, Ainsley Brown of CUAHSI, and Pamela Harvey of the University of Alabama, 
were the main people who helped with the institutional arrangements and with travel, housing, and 
living arrangements in Tuscaloosa. University of Alabama Students Dinuke Munasinghe and Austin 
Raney assisted with field activities and student projects. The contribution from all Univ. of Alabama 
support is greatly appreciated. 

A key to the success of the National Water Center Innovators Program is the support it receives 
through the voluntary collaboration of the academic community, along with commercial and 
government partners. Altogether, over the four Summer Institutes held since the inaugural event in 
2015, more than one hundred graduate students have had the experience of working together at the 
National Water Center in group research projects. Aside from the technical progress that they make, 
equally important are the friendships formed and professional networks established among the 
Summer Institute participants that they carry with them into the future. This is a unique and valuable 
professional experience, and we express our appreciation to the NOAA National Weather Service for 
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hosting and supporting this innovative activity and this opportunity to contribute to the enhancement 
of water prediction for our nation. 

 
Lauren E. Grimley 

Student Program Coordinator, NWC Innovators Program Summer Institute 2018, 
Department of Civil & Environmental Engineering, University of Iowa, 
IIHR-Hydroscience & Engineering, Iowa Flood Center   
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Project Summary  
In August of 2016, the NOAA National Water Model, a hydrologic model simulating observed and 
simulated streamflow over the continental United States (CONUS), became operational marking an 
unprecedented effort that rightfully challenged the way research is produced and the way hydro-
intelligence can benefit society. This modeling framework has also introduced ways in which 
interdisciplinary research surrounding water resources can be achieved. By providing river forecasts 
for 2.7 million reaches within CONUS, the NWM provides a nerve center in which, two previously 
distinct groups - ‘data generators’ and ‘data users’ - may unite to answer new questions in a time where 
population pressures and a changing climate make water management increasingly paramount. 

‘Data generators’ have traditionally included the modeling community and field scientists, who are 
interested in ensuring the data are as accurate as possible in as many places as possible, and ‘data users’ 
are those who use this data to communicate, plan, and study emerging properties surrounding water 
resources. With the NWM serving as common platform to both generate and provide data, these 
groups can interact in ways that result in more accurate models and more robust applications. 
Capitalizing on this opportunity, the fourth National Water Center Innovators Program - Summer 
Institute brought together 23 students from 18 universities ranging from Oregon to Puerto Rico with 
backgrounds across a breadth of fields. In an intensive seven-week sprint, these students, with the 
help of theme leaders, industry professionals, and government researchers, demonstrated how data 
generators and users can not only come together under the framework of the NWM, but how their 
knowledge and experience can integrate, supplement, and improve each other’s work. In total, seven 
projects were executed that can thematically be grouped under the domains of hyper-resolution 
modeling, groundwater, and computational aspects of NWM & citizen science data. Combined, they 
explore questions relating to the when a hyper resolution model should be implemented, how to 
represent groundwater/surface water interactions in the NWM, how channel routing and geometry 
can affect NWM forecasts, and how citizen science data can be processed for NWM implementation. 

The first two chapters of this report focus on evaluating and improving the methods used to model 
groundwater-surface water interactions in the context of the NWM. The NWM only considers ground 
to stream water fluxes which can be problematic in losing streams where the neighboring groundwater 
level is lower than the stream stage due to natural topography, drought, or groundwater withdrawals. 
The Northern High Plains Aquifer (NHPA) was used a case study for this series of studies. The 
authors of Chapter 1 chose to analyze the effect of the losing stream mechanisms on the NWM’s 
streamflow prediction abilities in hydrologic extremes. The project utilized USGS gage data, NWM 
output, groundwater availability models, and Normalize Difference Vegetation Indices (NDVI) from 
remote sensing to analyze how the NWM’s current groundwater/surface water interaction scheme 
affects flow during floods and droughts. Chapter 2 involves an investigation into how the NWM 
estimates baseflow and its performance on two basins with different soil compositions in the NHPA 
using Rorabaugh and SWAT baseflow formulations as well as USGS gage data. Alternative 
formulations and methodologies to account for subsurface interflow were explored and demonstrated 
reductions in error metrics. 

The next two chapters were concerned with the implementation of hyper-resolution models in the 
Lower Rio Grande (LRG) river near Brownsville, TX. This region provided an excellent case-study 
due to its challenging hydrologic features including clay soils, rapid urban development, extensive 
system of secondary channels known by the Spanish word resacas, and a diverse, transboundary 
watershed. Both groups utilized the 2-D, physics-based Gridded Surface/Subsurface Hydrologic 
Analysis model (GSSHA) developed and maintained by the U.S. Army Corps of Engineers (USACE). 
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Chapter 3 sought to investigate the sensitivity of hyper-resolution models to varying rain event 
intensities and model spatial resolutions with the goal of providing insights to when and how these 
models should be implemented. Model outputs of inundated areas were compared relative to each 
other providing insights to how these factors could help guide decisions about hyper-resolution 
computations. Chapter 4 discusses another study that also utilized GSSHA in the Lower Rio Grande 
River for hyper-resolution modeling. The authors considered how the intricate network of storm 
sewer pipes affects flood inundation in the Brownsville, TX and what rainfall events they become 
important. 

The last three chapters discuss the computational aspects of the NWM including channel routing 
schemes, channel geometry methods, and the assimilation of crowd sourced data. In Chapter 5, the 
authors tackled the problem associated with homogenous routing schemes which often results in a 
trade-off of computational cost for computational accuracy. By associating dimensionless scaling 
parameters to terms of the Saint-Venant momentum equation, the project shed light on how a 
heterogeneous routing scheme could be better optimized for computing cost and accuracy metrics. 
Chapter 6 includes an assessment of the NWM trapezoidal channel geometries compared to actual 
channel geometry utilizing the HEC-RAS model as a catalyst. Improvements were suggested for better 
representing channel geometry while not sacrificing parsimony. Chapter 7 is concerned with how 
stage data collected from citizen scientists can be used to enhance the NWM. The group utilized a 
decision tree model to turn raw data into corrected data by factoring in several variables that could 
indicate the reliability of a crowd sourced data point. 

The students of the 2018 Summer Institute have been an absolute pleasure to work with and all 
successes are a testament to their work ethic, ability to collaborate, and dedication to spend their 
summer away from friends, co-workers, and family. The breadth of their work and respective 
backgrounds highlights the impact a community model can have on bringing scientists together. They 
have all contributed towards a goal of changing how water resources research is carried out and how 
citizens can engage with their water circumstance. More so, this shared experience has brought this 
academic community closer by fostering strong personal and professional relationships that will last 
for the length of their careers. 

The reports published here represent the culmination of seven weeks of research. Whether ‘data-
generators’ or ‘data-users,’ this work presents a platform not only for these students’ continued 
collaboration with their advisors, each other, and the NWC, but also enables the rest of the community 
to become more engaged in the development of the NWM and the overall advancement of hydrologic 
science.  

 

Fernando Aristizábal 
Student Program Coordinator, NWC Innovators Program Summer Institute 2018, 
Department of Agricultural & Biological Engineering,  
Center for Remote Sensing, University of Florida 

  



National Water Center Innovators Program Summer Institute Report 2018 

9 

Chapter 1 
 

Groundwater-Surface Water Exchange and Streamflow 
Prediction using the National Water Model in the 
Northern High Plains Aquifer region, USA  
Elizabeth Jachens1, Holly Hutcheson2, and Matt Thomas3 

1 Department of Biological and Ecological Engineering, Oregon State University; jachense@oregonstate.edu 
2 Department of Geology, The University of Georgia; hollyhutcheson@uga.edu  
3 Department of Geology, The University of Georgia; matthew.thomas@uga.edu 

Academic Advisors: John Selker, Oregon State University; Adam Milewski, University of Georgia 
 
Summer Institute Theme Advisors: David Steward, North Dakota State University, 
david.steward@ndsu.edu; Joseph Hughes, USGS,  jdhughes@usgs.gov 
 
Abstract: Currently, the National Water Model (NWM) only considers a one-way flux between 
streams and underlying aquifer systems, where groundwater enters streams but cannot return to the 
aquifer. Consequently, streamflow only gains discharge from groundwater in the downstream 
direction. Losing stream conditions occur where the stream stage is higher than the surrounding 
groundwater table as a result of natural topography, drought, or groundwater pumping. The purpose 
of this study is to evaluate how the inability to simulate losing streams in the NWM impacts 
streamflow prediction during hydrologic extremes. This study identifies possible losing stream 
reaches using USGS gage data, an existing USGS Groundwater Availability Model for the Northern 
High Plains Aquifer, and Normalized Difference Vegetation Index (NDVI) from remote sensing 
techniques in the Northern High Plains Aquifer, USA. While losing streams are traditionally 
identified using field techniques like seepage meters and soil temperature, this novel integrated 
approach utilized identification techniques with high spatial and temporal resolution to provide a 
preliminary assessment of losing reaches in the area. Hydrographs comparing the NWM and USGS 
gage data for losing and gaining stream reaches were created across floods and drought. For flood 
events, the lack of a losing stream mechanism resulted in modeled flood response characterized by 
an earlier peak discharge and an overestimate of the observed flood volume. For intermittent 
streams and in drought conditions, the NWM was unable to capture streams that go dry because 
there is no mechanism to lose water from the streams. On average, the USGS Groundwater 
Availability Model identified a losing mechanism contributing to streamflow loss of 0.1% per mile. 
The NWM has been shown to overestimate streamflow in both losing and gaining streams during 
drought conditions in the Northern High Plains aquifer. By incorporating a streamflow loss 
correction factor, the NWM could potentially improve predictions of the magnitude of streamflow 
prediction during hydrologic extremes. 
 

1. Motivation 

Extreme weather events are the single highest risk event in terms of impact and likelihood according 
to the World Economic Forum Global Risks Perception Survey in 2016 [1]. With extreme weather 
events predicted to increase frequency and intensity, forecasting and warning of these events will play 
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a significant role is water management in the future [2]. The National Water Model (NWM) currently 
provides Contiguous United States (CONUS) scale water forecasting capability at one-kilometer grid 
resolution and model improvements in hydrologic extreme forecasting are currently in development. 
Improved flood hydrology for the NWM is slated for completion in fiscal year 2020. Additionally, the 
integration of the NWM with groundwater and transport models to for low flow predictions will be 
incorporated to provide a complete integrated risk evaluation.   

Streamflow predictions for hydrologic extremes will require a comprehensive model that captures 
surface water and groundwater exchange processes. Despite acknowledgment of the need to manage 
groundwater and surface water as a single resource, in its current form the NWM provides a weak 
groundwater representation and a limited handling on groundwater-surface water exchange [3, 4, 5]. 
Currently the NWM only considers a one-way flux between the stream and the aquifer, where water 
can enter the stream from the groundwater (hereafter referred to as a gaining stream) but water cannot 
leave the stream. Consequently, streamflow does not have a mechanism for losing water in the 
downstream direction (referred to as a losing stream). A losing stream can occur where the stream 
water surface is higher than the surrounding aquifer water table and the stream bed permeability 
permits flow such that the hydraulic gradient indicates that flow will flow from the stream to the 
groundwater [5]. As a result, streamflow in the NWM has the potential to systematically overestimate 
streamflow in regions where the losing condition indicates that water would otherwise be leaving the 
stream system, especially in instances of extreme hydrologic events.  

2. Background 

In its current version, the NWM only includes mechanisms for streams to gain flow from the non-
linear reservoir representation of groundwater to surface water in streams, ignoring the effects of 
losing streams as a source of aquifer recharge. The assumption that streams do not lose water to the 
groundwater may not hold in areas where the water table is below the streambed due to natural 
variations in topography, prolonged drought, or anthropogenic causes such as agricultural pumping 
[6, 7]. One such location where the water table can be significantly below the stream level, thus 
invalidating the gaining stream assumption, is the Northern High Plains Aquifer (NHPA) with depth 
to aquifer varying up to several hundred feet below ground surface [8].  

The NHPA has been a region of interest considering the interaction between groundwater and surface 
water since the 1970’s with one of the first papers describing the transmission losses of streamflow to 
the groundwater for various streams in the region [9]. The USGS High Plains Regional Aquifer-System 
Analysis was released in 1988, highlighting the declines in groundwater levels that put the aquifer and 
basin on the map for future studies [19]. This report emphasized the complexity of the groundwater 
system in the region and the unique issues associated with agricultural pumping and groundwater 
levels that are still major areas of research. In the NHPA, the low precipitation months coincide with 
the irrigation pumping season; both factors contribute to a lowering of the groundwater table 
associated with losing stream conditions. Agricultural irrigation in the NHPA is primarily sustained by 
groundwater pumping, placing a large demand on the aquifer [10]. The large number of agricultural 
pumping wells and the large discharge volumes contribute to both spatial and temporal changes in 
losing stream conditions based on the pumping cycles and locations of the well. Recently, interest in 
the spatiotemporal distribution of groundwater recharge and transmission losses has grown in the 
scientific literature [20, 21, 22, 23]. With varying geology and precipitation amounts across the region, 
capturing the transient nature of groundwater-surface water fluxes needs to be considered when 
addressing losing streams.  

As a result of the historically documented losing stream conditions in the region, the analysis in this 
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paper focuses on case studies of the NHPA because the lack of two-way stream-aquifer coupling in 
the NWM may result in uncertainty in streamflow prediction ability. For regions with significant losing 
streams like the NHPA, the NWM has the potential to systematically overestimate streamflow in 
regions where the condition indicates that water would otherwise be leaving the stream system. For 
flood events, we hypothesize that the NWM will result in a more intense modeled flood response with 
an earlier flood peak and overestimated discharge [11]. For drought conditions, the omissions of a 
mechanism for the water to exit the stream prevents the stream from going dry even if water table 
and channel conditions drive losing stream conditions. We hypothesize that the lack of a losing stream 
mechanism in the NWM will result in some stream reaches having modeled non-zero flows during 
no-flow conditions. 

3. Methodology 

The following section breaks down the methodology into two sections: (1) the identification of 
possible gaining and losing streams and (2) the analysis of NWM performance in extreme hydrologic 
events on these reaches. Identification of potential losing and gaining stream reaches was completed 
using USGS streamgage data, a USGS Groundwater Availability Model for the NHPA, and remote 
sensing data. The analysis consists of constructing longitudinal discharge profiles along some stream 
reaches and testing for differences between modeled and observed discharges in identified reaches 
during extreme events.  

3.1. Identification Methods for Surface Flux to Groundwater 

While the primary purpose of this study was to evaluate the NWM’s ability to predict streamflow in 
hydrologic extremes for losing stream conditions, first losing streams needed to be identified. In the 
past, stream reaches in the NHPA have been identified as losing or gaining by field measurements 
including seepage meters, sediment cores for hydraulic conductivity with depth, sediment temperature, 
as well as groundwater modeling [12, 13, 14]. Many of these methods for determining groundwater-
surface water flux involve time and monetarily expensive field measurements and equipment which 
would not be feasible to perform for all stream reaches within the NHPA. Additionally, these field 
measurements are only representative of static locations for a given time and thus do not capture the 
spatiotemporal variability of groundwater-surface water flux. Consequently, these field based 
techniques for identifying losing stream reaches have limited applicability for generalization of such 
processes and trends for the larger region. In order to capture the spatial and temporal variability of 
losing stream reaches, we used identification methods that do not require significant field work, have 
good spatial coverage, and are transient by nature. The three data sources that were selected to identify 
losing streams in the NHPA were USGS streamgages, an existing USGS Groundwater Availability 
Model, and remote sensing products.  

Losing streams were first identified by streamflow differencing using USGS discharge data. This 
method was selected because the gages are widespread and have accessible data at high temporal 
resolution. Since stream gages only report streamflow, identifying losing stream reaches using this 
method only accounts for reach average changes in total discharge and does not capture finer scale 
changes between gages. Losing stream reaches were identified as the reach upstream of a gage with a 
lower mean annual discharge than the next gage upstream.  

Secondly, losing streams were identified using the USGS Groundwater Availability Model. This 
transient groundwater flow model was constructed to evaluate the water resources within the NHPA 
and quantify the groundwater-surface water interactions with the inclusion of the effects of 
groundwater pumping wells. The USGS Groundwater Availability Model was chosen because the 



National Water Center Innovators Program Summer Institute Report 2018 

12 

existing model provides a detailed biannual groundwater-surface water flux for 1km grid cells along 
the stream for the NHPA from 1940-2008. Limitations of the model in identifying losing stream 
reaches include no modeled surface runoff and constant environmental forcings.  

The last method for determining the location of losing streams utilized remote sensing data. Landsat 
5 and 7 images with less than 10% cloud cover were used from 1993-2009. The Normalized Difference 
Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI) were calculated for 
1km grids along the streams.  NDVI was used to proxy tree cover and vegetation including 
cottonwood trees. With relatively shallow root zones, cottonwood tree growth has been associated 
the groundwater water table with slower tree growth rates associated with losing stream reaches 
compared to the faster growth rates within gaining reaches [15]. Thus, areas without substantial 
vegetation are likely in areas with deeper groundwater table levels and may be indicative of losing 
stream conditions. Grids with low NDVI values (0-0.2) (indicating barren and low shrub lands) and 
do not have water confirmed by the NDWI were identified as possible losing reach locations for this 
method [24]. Using remote sensing provides easy access to high spatiotemporal resolution imagery; 
however, this method uses vegetation as a proxy for streamflow and does not consider other 
environmental factors that might affect the relationship between streamflow and vegetation.  

Each of the three identification techniques produced a different map of likely losing and gaining 
streams (Figure 1). The three identification methods each produce one metric of a losing stream: 
decreased streamflow in the downstream direction, groundwater model indicating a hydraulic gradient 
with flux from the stream to the aquifer, and vegetation. However, no method directly measures or 
simulated the groundwater-surface water flux and thus no single method was an absolute metric of a 
losing stream’s flux from streamflow to groundwater. Instead, each method provides a different way 
to identify losing stream conditions and thus a combination of the methods should be used for final 
selection of reaches to study. An overlay of losing and gaining stream reaches was used to identify 
stream locations as being likely to be a losing or gaining stream when flagged by at least two of the 
three identification methods. This allows for reducing the total streams of interest to only streams that 
are susceptible to losing conditions.  

3.2. Evaluation Methods 

In order to evaluate the performance of the NWM, longitudinal profiles and hydrographs for NWM 
streamflow were compared with those for corresponding USGS streamages. The spatial extent of 
discharge in the longitudinal profile is one way to visualize and compare the data, with the advantage 
of geologic references and downstream trends.  

The differences in mean overprediction of streamflow per event and flood peak timing between the 
NWM and corresponding streamgages was the primary metric for determining NWM streamflow 
prediction ability. Overpredictions were determined for rising, peak, and falling regions of the 
hydrograph for flood events while overpredictions for the entire event were used for droughts. 
Averages are reported per event, per location and summarized over the entire period of record for 
losing and gaining streams. The differences in mean streamflow overprediction in each event  
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Figure 1. Maps of losing stream reaches in the Northern High Plains Aquifer in 2003 produced by USGS Gage Data, the 

USGS Groundwater Availability Model and Remote Sensing. 
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between gaining and losing reaches were analyzed in order to determine whether the difference in 
mean flow overestimate by the NWM between losing and gaining reaches was significant. 

Extreme hydrologic events included in this study are floods and droughts based on water years 1993-
2008 and 2000-2008, respectively. Flood events were chosen by identifying where the USGS discharge 
at the gage was above the bankfull discharge using the Groundwater Toolbox [16]. For gages that did 
not have a bankfull discharge available, a return period of 5 years was used to estimate flooding events 
from streamgage data. Drought events are selected using the US Drought Monitor records for events 
from D1-D4 severity [17]. T-tests were then used to investigate the potential difference between the 
NWM estimation in flow in gaining and losing reaches for both different severity levels and stream 
orders. 

4. Results and Discussion 

The streamflow prediction ability of the National Water Model (NWM) for losing and gaining 
streams was tested using the case study region of the Northern High Plains Aquifer (NHPA) 
between 1993 and 2009.  

4.1. Losing Stream Reach Identification 

Probable losing stream reaches to be compared against the NWM were identified when at least two 
of the three independent identification techniques flagged a reach as  

losing. Figure 2 shows an overlay map of possible losing stream locations for each of the three  

 

Figure 2. Probable losing and gaining stream reaches for the Northern High Plains Aquifer in 2003. 
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identification methods for a representative pumping season of May-September, 2006. The northern 
basins in the NHPA are predominantly characterized by the Sand Hills region. This area has a large 
saturated thickness of 1000 feet or more, minimal surface or groundwater irrigation, and significant 
annual recharge from precipitation; by our analysis streams tend to be gaining [8]. The shallow 
depth to groundwater suggests that losing stream conditions are not likely. In contrast, the Platte 
and Republican River Basins are characterized by conditions where the water table is likely below 
the stream water level, and by our analysis have losing reaches. Both of the major basins in 
southern NHPA are characterized by Ogallala formations with Quaternary valley fill deposits with 
soil classes of sandy clay loam and aquifer saturated thickness ranging between 0-500 feet with 
large depths to aquifer, paired with anthropogenic influences to the natural streamflow including 
groundwater pumping and surface water diversion [8].  

The Republican River was selected as a representative river for analysis because it has both losing 
and gaining reaches according to each of the three identification techniques. Figure 3 shows the 
spatial trends of the average stream discharge from May-September 2016 from upstream to 
downstream for the NWM, USGS stream gages, and the USGS Groundwater Availability Model for 
the Republican River. The longitudinal profile shows the spatial extent of the discharge, with  

 

Figure 3. Longitudinal profile of the Republican River for average discharge for May-Sept 2006. 

 

 

decreases in streamflow associated with stream diversions or losing stream conditions and increases 
in streamflow associated with incoming tributaries or springs [18]. Significant geologic features that 
contribute to changes in streamflow include a major tributary approximately 50 km downstream, a 
high density of pumping wells between 250 and 350 km downstream, and the Harlan Reservoir at 
400 km downstream. However, not all changes in flow can be immediately explained by geologic 
features. The NWM does not show a general increase in streamflow in the downstream direction, 



National Water Center Innovators Program Summer Institute Report 2018 

16 

despite numerous tributaries that contribute flow to the mainstem of the Republican River. The 
noise in the NWM is likely a product of the independent calculation of discharge in stream segments 
by the NWM. Additionally, the NWM discharge is notably higher than the discharge measured by 
the USGS Gages. Linear interpolation is applied in between the eight USGS Gages. The USGS 
Groundwater Availability Model captures the decrease in streamflow associated with the agricultural 
pumping, but does not include runoff which could underestimate flow. All things considered, the 
NWM discharge is systematically higher than the USGS Gage data and does not show a change in 
flow in the downstream direction.   

4.2. Losing Stream Distribution 

The groundwater-surface water flux was quantified using the USGS Groundwater Availability Model. 
The distribution of groundwater-surface water flux of stream segments is centered around 0, with 
20% of stream cells with no groundwater-surface water flux (Figure 4). With 25% of the stream 
segments designated as losing reaches, the arithmetic average of stream loss is 2% of streamflow while 
the weighted average normalized by portion of streamflow in the basin is 0.1% (Figure 5). When 
compared to all stream segments, streamflow loss accounts for a cell-average of 10% and a streamflow 
weighted average of 0.5% of flow in the stream segment (Figure 6). 

 

 
Figure 4. Distribution of GW-SW flux for stream segments in the NHPA. 
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Figure 5. Distribution of loss as a percent of streamflow for designated losing reaches. 

 
Figure 6. Distribution of loss as a percent of streamflow for total streamflow in all streams. 
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4.3. Floods 

Due to small sample size, no statistical tests were performed for flood events losing and gaining 
reaches over the time period 2003-2008. However, using observations of the hydrographs, there are 
several differences between the NWM and USGS streamgage hydrographs for a section of the 
Republican River. NWM hydrographs for flood events tend to have much larger predicted peak 
discharges as well as earlier peaks compared to USGS streamgages in losing streams (Figure 7.a). 
While the peak discharge in the NWM is still considerably higher than USGS streamgage data in 
gaining streams, the difference is less than with losing streams (Figure 7.b). The NWM predicts peak  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. (a) Hydrograph for May 26, 2008 flood event on the Republican River on a losing reach. The NWM predicts a 17000 cfs 
higher peak discharge occurring 8 hours earlier than the observed peak; (b) Hydrograph for the same flood event on an upstream gaining reach. 

The NWM predicts a 2100 cfs higher peak discharge occurring 8 hours earlier than the observed peak. 
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discharges and peak timing that are larger in magnitude and earlier for losing streams compared to 
gaining streams (Table 1). While the NWM streamflow prediction skill tends to be better in gaining 
reaches than in losing reaches, the NWM systematically overestimates the peak discharge with an early 
peak timing.  

Table 1. Summary of Differences in Flood Prediction in Gaining vs Losing Streams for the example in Figure 4. 

 Losing Gaining 

Peak Discharge (cfs) 17516 2156 

Peak Timing (hrs) 26 8 

Total Volume (ft3) 2.2 (10)9 1.4 (10)9 

 

Another factor that could be attributed to the higher peak discharge of NWM besides a lack of a losing 
stream mechanism like bank storage is the singular continuous trapezoidal channel geometry used in 
the NWM. By modeling a channel as having infinitely deep sides, there is no floodplain for the water 
to overflow onto and as a result that water stays in the channel producing a higher peak flow. 
Additional research on more representative stream cross sections to include a floodplain should be 
pursued in combination with a losing stream mechanism in order to improve flood modeling in the 
NWM. 

4.4. Droughts 

Statistics of identified losing streams compared to gaining streams for droughts are summarized in 
Table 2. Hydrographs for drought events in losing reaches and gaining reaches are not statistically 
different (t = -0.507, df = 366, p-value = 0.612). However, the NWM hydrographs for drought tend 
to have much larger predicted discharges compared to the USGS Gages in both losing and gaining 
streams (Figure 8.a-b). In both cases, the NWM fails to model a dry stream when the USGS Gage 
indicates that the stream is not flowing.  

Table 2. Summary of differences in drought prediction in gaining vs losing streams for the example in Figure 5.  

 Losing Gaining 

Mean Discharge (cfs) 259 250 

Flow Volume (ft3) 3.2 (10)9 3.3 (10)9 

 

In addition to looking at overall losing and gaining stream differences, differences in the 
overestimation of losing and gaining streams were investigated by drought severity level. While the p-
values suggest that the difference is not significant between losing and gaining streams, overall the 
gaining streams have a higher overestimation (2589.09 cfs) than the losing streams (2396.71 cfs) 
(Table 3). 
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Figure 8. (a) Hydrograph for a 2006 drought event on a losing reach of the Republican River. The mean overestimate of discharge by the 

NWM is 259 cfs; (b) Hydrograph for the same drought event on an upstream gaining reach of the Republican River. The mean overestimate 
of discharge by the NWM is 250 cfs. 
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Table 3. Summary of the Statistic Differences in the drought severities for losing and gaining streams. 

Drought 
Level t-score Degrees of 

Freedom p-values 
Mean losing 
overestimate 

(cfs) 

Mean gaining 
overestimate 

(cfs) 

All -0.51 366.14 0.61 2396.71 2589.09 

D1 0.12 159.36 0.90 2958.35 2889.53 

D2 -1.25 148.58 0.22 1922.53 2587.57 

D3 0 60 1 2414.61 2414.61 

D1-2 -0.68 306.20 0.50 2476.40 2745.85 

Stream orders were also considered when looking at the overestimation of the NWM. According to 
the t-tests run on different stream orders, the NWM overestimates more in gaining 5th order streams 
and in losing 6th and 7th order streams. The 4th and 8th order streams did not have a significant 
difference in overestimates (Table 4).  

Table 4. Summary of the Statistic Differences in the stream orders for losing and gaining streams. 

Stream 
order t-score Degrees of 

Freedom p-values 
Mean losing 
overestimate 

(cfs) 

Mean gaining 
overestimate 

(cfs) 

All -0.51 366.14 0.61 2396.71 2589.09 

4 -1.32 49.72 0.19 22.38 40.53 

5 -7.11 60.16 1.61 (10)-9 3.23 182.88 

6 3.36 57.75 1.40 (10)-3 902.54 428.54 

7 2.74 21.34 0.01 2079.58 596.37 

8 1.41 57.02 0.16 8765.86 7636.76 

 

5. Conclusion 

The National Water Model (NWM) does not include two-way surface water and groundwater 
coupling- however both components should be included to effectively model or manage water as a 
single resource. Losing streams can significantly change the streamflow pattern because water can exit 
the stream and recharge the groundwater. Losing streams should be considered particularly in areas 
where the groundwater is significantly below the surface water. With the natural variations in 
topography leading to large depths to groundwater and contribution of agricultural pumping, the 
Northern High Plains Aquifer is one location where losing stream conditions are met and have been 
confirmed in the past.  

This study uses the Northern High Plains Aquifer as a case study for determining the NWM prediction 
skill for losing versus gaining streams during hydrologic extreme events, namely droughts and floods. 
Overall, the NWM systematically overestimates streamflow which could be a result of excluding a 
losing stream mechanism. Although no results were made with the overall floods in the study area, 
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the NWM over-predicted the peak discharge as well as predicted the peak to be over a day earlier in 
some cases with losing streams performing worse than gaining streams in a flood example on the 
Republican River. Future research should have a larger sample size of flood events so that statistical 
tests can be run. Overall there was not a statistical difference in streamflow prediction skill for drought 
events for losing versus gaining streams. For drought events, losing and gaining reaches weren’t 
statistically different in NWM overprediction of streamflow. Similarly, no difference was found 
between losing and gaining reaches when drought events were analyzed by severity. NWM 
overprediction was significantly higher in losing reaches on sixth and seventh order streams; analysis 
of fifth order streams showed that overpredictions were instead significantly higher in gaining streams. 
Many streams are seasonally dry in the Northern High Plains Aquifer, which the NWM was not able 
to capture at all. This research would benefit from a larger sample size for analysis accomplished by 
extending the time period in order to include more hydrologic extreme events to better describe the 
system as a whole.  

While a comprehensive groundwater model being incorporated into the NWM would be 
computationally expensive and require dedication of resources and is therefore not currently feasible, 
the NWM could make steps towards creating a more accurate representation of groundwater and 
stream water flux by incorporating a losing stream term into the water balance.  This study proposes 
using an average stream loss term for a region to represent a losing stream reach with water exiting 
the stream. The total water lost from the stream that went into the aquifer is 10% in losing stream 
reaches, or alternatively 1% of the total streamflow in the entire region of the Northern High Plains 
Aquifer using the USGS Groundwater Availability Model. Thus, the NWM could incorporate a 
uniform losing term of 1% as a losing stream mechanism in order to improve the NWM streamflow 
prediction. However, this method of applying a blanket percent loss term will vary across regions and 
thus would need to be calculated before being applied to the NWM. Additional work on quantifying 
the losing stream potential and the corresponding changes in streamflow should be pursued to 
improve the NWM.  
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Abstract: Freshwater is essential to human civilization, and groundwater amounts to approximately 
30% of the overall freshwater available on earth [1, 2]. The National Center for Atmospheric 
Research (NCAR) along with National Weather Information Service (NWIS) and National Oceanic 
and Atmospheric Administration (NOAA) released version 1.2.0 of the National Water Model 
(NWM) in October 2017. The NWM utilizes a conceptual (not physically-explicit) model for 
estimating groundwater discharge (baseflow) to streams, and this non-linear method only expresses 
a part of the interaction between groundwater and surficial hydrology. This research evaluates the 
current representation of groundwater in the NWM with a case study of two watersheds located 
within the Northern High Plains Aquifer (NHPA) region. A comparison between USGS observed 
streamflow and baseflow, and the NWM output showed that the NWM does a much better job of 
predicting streamflow and baseflow in the clayey catchment than in the sandy catchment. Based on 
the results of this analysis, Rorabaugh-Rutledge’ and SWAT baseflow alternative functions were 
analyzed for representing the interactions between reservoir storage and baseflow. By comparing 
baseflow hydrographs derived from each alternative formulation, potential improvements to the 
NWM baseflow estimation were investigated. The results show that the magnitude and duration of 
NWM baseflow can be better correlated with observed baseflow with the use of the suggested 
alternative solutions.  
 

1. Motivation 

The National Water Model (NWM) is a hydrologic model that simulates and forecasts streamflow in 
2.7 million reaches across the Continental United States (CONUS). However, the current version of 
the NWM (v1.2.0) represents baseflow discharge to streams using a conceptual bucket model 
characterized with a non-linear exponential function to determine groundwater storage and discharge. 
As there is no explicit representation of aquifer systems in the NWM, it is important to evaluate the 
NWM’s ability to estimate groundwater discharge in different hydrogeological conditions. Baseflow 
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can be an important component of streamflow especially in reaches with strong stream-aquifer 
interaction. Utilization of a formulation that allows for only a one-way interaction between the sub-
surface reservoir storage and stream across the CONUS could also make it harder for the NWM to 
provide accurate baseflow estimations. It is important to understand the limitations of the simplified 
groundwater system used in the NWM to improve baseflow estimations and increase the reliability of 
the NWM forecasting in flood and drought scenarios. 

2. Objectives and Scope  

The objective of this research can be divided into two parts: 1) Evaluating the performance of the 
NWM in simulating baseflow and streamflow, and 2) Improving forecasting of the NWM using 
alternative formulations. Five study catchments were selected in the Northern High Plains Aquifer 
(NHPA) region to evaluate baseflow estimations. Simulated baseflow and streamflow from the NWM 
in the five catchments were compared with USGS observation data to evaluate the NWM results. 
Time series analysis of the NWM retrospective simulation output with the USGS observation dataset 
allowed for analyzing the weaknesses and strengths of the groundwater estimation scheme in the 
NWM. In addition, baseflow volume contribution from the groundwater reservoir of the NWM to 
total streamflow was also conducted to assess what portion of total streamflow is represented by 
baseflow. These investigations were used as a baseline for improving the NWM forecasting.  

Improvements to baseflow estimations were based on adapting two alternative baseflow recession 
formulations that address the relationship between subsurface storage and groundwater discharge. To 
make it easy to represent the alternative formulations, a python module was created which can exactly 
represent the baseflow estimation scheme in the NWM. The alternative formulations have been 
represented in the python module and the performance of each formulations baseflow estimation at 
the watershed-scale were assessed. As part of the adaptation of new groundwater solution functions, 
a new partitioning methodology, which reduces the magnitude errors in deep percolation loss in the 
NWM output, was also included. By using alternative formulations, partitioning, and calibration, the 
possibility of forecasting improvement to the NWM groundwater module was evaluated. 

3. Previous Studies 

This is the first research evaluating the representation of groundwater baseflow in the NWM. 
Groundwater represents approximately 30% of the available freshwater on Earth [1, 2], and changes 
in groundwater reservoirs have a critical impact on the surficial water budget [3]. These aspects 
emphasize the importance of accurately representing groundwater systems in the NWM, so as to 
address the NWM goal of providing reliable short and long term hydrologic forecasts [4]. 

Groundwater baseflow is difficult to measure in the field, and for this reason many efforts have 
proposed a variety of methods to mathematically estimate baseflow, such as the historical analysis of 
a peak streamflow events’ recession slope, or the explicit investigation into a groundwater reservoirs’ 
physical parameters [5, 6]. Various approaches of characterizing groundwater baseflow were 
investigated and adapted into this research. Although these methods idealize the natural environment, 
they provide a conceptual basis for model representation and parameter adjustment, in order to best 
represent a natural groundwater-surface water flow system [7].  
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4. Methodology 

4.1. Study Area 

Five separate catchments located within the NHPA region with USGS gaging stations were selected 
to evaluate the current groundwater component of the NWM (Figure 1). Study catchments were 
selected within the NHPA region because of the strong interaction between the streams and aquifer 
which is important for evaluating the current and proposed formulations of the groundwater 
component in the NWM. Baseflow is a major component of the streamflow constituting up to 90 
percent in North-Central Nebraska [8]. Precipitation in the NHPA ranges from about 406 mm in the 
west to about 787 mm in the east [9]. Grasslands and agriculture are the two major land use types 
covering about 56% and 36% of the region respectively. A contiguous area of sand deposits known 
as the Nebraska Sand Hills located in the central NHPA region is an important surficial feature for 
aquifer recharge. The eastern region of the NHPA is less permeable and has limited stream-aquifer 
interaction than in the central and the western regions due to the glacial deposits overlying the NHPA. 
The five catchments were selected such that it allowed for the groundwater component to be evaluated 
in regions of different soil and land use types and aquifer thickness. Further information about the 
five catchments are provided in Table 1. 

 

 

Figure 1. Study catchments with their corresponding USGS gaging station IDs in the Northern High Plains Aquifer (NHPA) region. 
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Table 1. Soil type, land-use, NWM feature ID, % clay, and land-use information of the five study catchments in the Northern High Plains 
Aquifer (NHPA) region. 

Catchment Area 
(km2) 

NWM 
Feature ID 

USGS 
ID %Clay Terrain Land use 

A 3157 17457349 6762500 < 30% High Plains Pasture + Ag 

B 6096 17321395 6786000 < 30% Sand Hills Pasture 

C 1839 17274026 6799100 < 30% Loess Hills Ag 

D 5636 11721499 6821500 < 30% High Plains Pasture + Ag 

E 3125 18799565 6880800 > 30% Loess & 
Glacial Drift 

Ag 

4.2. Groundwater in the National Water Model 

The NWM implements a simplified groundwater representation using a conceptual groundwater 
reservoir “bucket” hereinafter referred to as Non-Linear Reservoir (NLR). The NLR transfers water 
to surficial hydrology based on the following exponential storage-discharge function [16]: 

 

																																																																				𝑄#$% = 𝐶 ∗ )𝑒+,-#.+.%∗
/

/012 − 15																																												(1) 

Where, Qout is the groundwater discharge for each time step, C is the unit coefficient, exponent is a 
calibration parameter, z is the water table in the bucket, and zmax is the NLR depth (bucket depth). 

The current formulation used to solve water flux from the NLR has only a one-way coupling with the 
streams in that the NLR can lose water to the stream but cannot gain water from the streams through 
bed leakage. The only recharge to the NLR is through deep percolation from soil column, and the 
only outflow is through discharge at the headwater end of each stream reach. It is also important to 
note that the maximum NLR depth in the five study catchments is significantly less than the observed 
aquifer thickness throughout the study region (Figure 2). 

4.3. Data Retrieval of USGS Observations and NWM Input/Outputs  

Total stream flow data recorded at the outlet point for each of the five study areas was used in tandem 
with a suite of other environmental characterization datasets. These products were acquired and 
processed using the USGS Groundwater Toolbox (GWT). This graphical mapping interface includes 
several built-in hydrological analysis tools, including modules designed for separation of baseflow 
from observed streamflow [10]. One of the baseflow separation tools is the Base-Flow Index (BFI 
Standard and Modified) method. This method was determined the most efficient option based on 
available data in the five study areas of this research. The GWT software intuitively produces tabular 
results that were then translated into format for comparison with the simulated NWM datasets. 

The NWM simulation outputs used for the study was from the 25-year retrospective simulation 
conducted for the CONUS. A significant portion of this research dealt with the acquisition, 
organization, and processing of NWM outputs inclusive to the spatial and temporal region 
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Figure 2. NLR depths for the stream reach catchments.  

 

of interest within this research. The outputs were acquired in a NetCDF4 binary file format. The initial 
datasets were sourced from the NWM CHRTOUT module (channel routing output) from 2003 to 
2009 [11, 12]. This seven-year period was selected for its 2007 to 2009 overlap with the simulated 
results of a publicly unreleased NWM version 1.2 subset region of the NHPA region [13]. In order to 
extract a small subset of data for the five study regions from these sizable data frames, approximately 
3000 geospatially referenced stream reach polylines, and their respective catchment polygons provided 
by NCAR were used to define an aggregated search index based on featureID/ComID [4]. 

Both of these NWM datasets also match the spatial and temporal extent of a groundwater availability 
model (GWAM) produced for the NHPA using the USGS MODFLOW groundwater modeling 
software [9, 13]. The GWAM data utilized in this research helps validate the simulated NWM outputs, 
and observed USGS measurements, for a robust basis to develop alternate NLR functions. 

4.4. Representing alternative formulations using Python module 

The module that estimates baseflow in the NWM, which is named module_GW_baseflow.F, is a 
Fortran-based module. This Fortran-based module was translated to a Python-based module called 
Baseflow_calc.py. The purposes of developing this Python module are 1) to model the baseflow 
estimation scheme being used in the most recent version of NWM, and 2) to use it as a platform to 
evaluate the alternative formulations. The benefit of using the Python module is that it is possible to 
simulate baseflow without having to drive the entire NWM. Also, the selected equations, a modified 
Rorabaugh-Rutledge function, and an adaptation of the Soil and Water Assessment Tool’s (SWAT) 
[5,15]. The Rorabaugh’s and SWAT baseflow functions were easily represented in the Python module 
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and testing their effects on baseflow was simple and efficient. These formulations were used because 
they consider hydrogeological components of aquifer more explicitly than the NWM. The NWM 
dataset that includes deep percolation outputs from the soil columns was used as the input data for 
each alternative equation. It is important to note, the NWM is not currently accounting for an 
interflow component in subsurface routing processes.  This suggests that the deep percolation, which 
is influx to the NLR, is usually overestimated. The apparent lack of interflow appears to cause baseflow 
magnitude discrepancies, as made evident by NWM total streamflow in sandy areas originating almost 
solely from baseflow. In order to consider the absent subsurface routed interflow reduction of deep 
percolation, the deep percolation was partitioned into two components: 1) inflow to the NLR 
calculated by multiplying deep percolation by BFI, and 2) interflow, calculated by multiplying deep 
percolation by an interflow index, or (1-BFI). 

4.4.1. Rorabaugh-Rutledge 

Rorabaugh formulated an equation to estimate groundwater reservoir baseflow into surface waters [5]. 
It is important to note that Rorabaugh’s function assumes that there are only two components to the 
hydrograph that baseflow is separated from, groundwater discharge and surficial streamflow [7]. 
Rorabaugh’s original function was further developed by Rutledge [6]. A variation of Rorabaugh and 
Rutledge’s formulations was adapted for this works NWM NLR evaluation, and is expressed by the 
governing Equation (2) below: 

																																																																	𝑄#$% =
1.866(𝑅𝑡𝐴 )

𝐾
∗ 𝑒

?@.ABBCD%
EF 																																																												(2)	 

Where Qout is groundwater discharge (m3/s), R is recharge (m3/s), t is time adjusted to the hourly 
datasets (3600 sec), A is catchment area (m2), and K is as recession index of the time for groundwater 
flux to move through the conceptual NLR.  

In order to accurately couple the value of K with the parameters for each NWM polyline stream reach 
available in the CHANPARM.nc file, further development of this function is necessary. Currently our 
formulation does not include a dynamic K value per each stream reach. Instead an average K of 45 
days (3.8e6 seconds) was sourced from the literature for groundwater environments similar to those 
expressed in the five study areas [3].  

4.4.2. SWAT baseflow formulation 

The Soil and Water Assessment Tool (SWAT) utilizes the following equation modified from 
Hooghouldt, Smedema and Rycroft to estimate groundwater flow into streams [14-16]: 

																																							𝑄HI,K = 	𝑄HI,K?L ∗ 𝑒𝑥𝑝?O∗∆% +	𝑤STUSH,VUW1 −	𝑒𝑥𝑝?O∗∆%X																																									(3) 

Where, Qgw,i is the groundwater flow into the channel on day i (mm), Qgw,i-1 is the groundwater flow 
into the main channel on day i-1 (mm), α is the baseflow recession constant, Δt is the time step, wrchrg,sh 
is the amount of recharge entering the reservoir on day i (mm).  

The baseflow recession constant, α, is a lumped parameter depending on the hydraulic conductivity, 
specific yield, and distance from the ridge or sub-basin divide for the groundwater system to the stream 
reach and an index for groundwater flow response to recharge [14, 16]. 
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5. Results 

Preliminary time series analysis of the NWM retrospective daily streamflow and baseflow outputs for 
each of the catchments showed two distinct trends. Catchments A, B, and D, which are the sandier 
catchments, had a similar trend in which baseflow contributed to almost all of the streamflow in these 
catchments (Figure 3). Catchment C and E, which had higher clay percent, followed a different trend 
and had overland flow as an important component to the total streamflow simulated. Hence, 
catchment B, which had the highest sand percent, and catchment E, which had the highest clay 
percent, were selected as representative catchments for the different soil types for detailed evaluation. 
It is also important to note that the NWM predicts streamflow from catchment A, yet the catchment 
USGS station has recorded zero streamflow for the last 2 years which shows the NWM’s inability to 
simulate a losing stream. 

 
Figure 3. Streamflow and baseflow estimation by the NWM from 2003-3009 for the five study catchments. 

5.1. Evaluation of NWM streamflow and baseflow estimations 

Streamflow and baseflow plot of the NWM retrospective output for the sandy catchment B (Figure 
4a) showed that baseflow accounted for about 97% of the total streamflow from 2003-2009. This 
indicates that almost all the water that reaches the land surface in the NWM percolates through the 
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homogeneous soil column of the land surface model (LSM) of the NWM and gets dumped to the 
stream as baseflow. It also demonstrates the distinct lack of overland flow generation by the NWM in 
the sandy soils of catchment B although overland/storm runoff was observed at the USGS station 
(Figure 4b). As a result, baseflow contribution to streamflow in the NWM is considerably higher than 
observed baseflow contribution (Figure 4b, 4d) with a R2 of only 0.09 (Table 2). There is, however, 
almost no time lag in the water entering and leaving the groundwater bucket and almost all of the 
water entering the NLR leaves the NLR at the same time step (no storage) as demonstrated by the 
plot of water inflow and outflow for a reach in catchment B (Figure 5). As a result, the peak flows 
from the NWM during big storm runoff events is much higher than observed in the USGS station at 
catchment B (Figure 4c) resulting in a R2 of 0.28 (Table 2). These results show that the model might 
not be able to do a good enough job of streamflow forecasting during drought periods because of the 
lack of storage and time lag in the groundwater component of the NWM. 

 

Figure 4. a) Streamflow and baseflow estimation by the NWM for catchment B from 2003 – 2009, b) Observed USGS streamflow and 
baseflow for catchment B for the same time period, c) Streamflow comparison between NWM and USGS, and d) baseflow comparison 

between NWM and USGS.  

Table 2. Statistical results for streamflow and baseflow comparison for the evaluated catchments. 

 
Catchment B Catchment E 

Streamflow Baseflow Streamflow Baseflow 

R2 0.28 0.09 0.43 0.41 

RMSE (𝑚B/𝑠) 33.07 32.71 7.81 3.73 
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Figure 5. Comparison of groundwater recharge (bucket inflow) and groundwater discharge (bucket outflow) for each time step for reach 
“17332745” of catchment B. 

 

 

Figure 6. a) Streamflow and baseflow estimation by the NWM for catchment E from 2003 – 2009, b) Observed USGS streamflow and 
baseflow for catchment E for the same time period, c) Streamflow comparison between NWM output and USGS, and d) baseflow comparison 

between NWM output and USGS. 
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Streamflow and baseflow analysis of the NWM retrospective output for catchment E with USGS 
station observed data shows that the NWM does a much better job of simulating streamflow and 
baseflow (Figure 6a, 6b) in the clayey catchment with R2 of 0.43 and 0.41 for streamflow and baseflow 
respectively (Table 2). Baseflow accounted for about 61% of the total streamflow in the NWM output 
from 2003-2009 closely matching the observed baseflow contribution of 49% to streamflow. Baseflow 
in catchment E, however, averaged less than 1 m3/s for most of the evaluation period and was 
considerably lower than in catchment B. The model was also able to simulate overland flow much 
better in catchment E when compared to the sandy catchment B, and, as a result, the NWM predicted 
streamflow was much more comparable to observed streamflow even during big storm events (Figure 
6c). The model still greatly over predicted baseflow during big storm events (Figure 6d) which could 
again indicate to the lack of storage in the groundwater component of the NWM. The results show 
that the NWM does a good job of simulating streamflow and baseflow in clay regions where there is 
no prominent connection between the streams and aquifer and baseflow is not a major contributor to 
streamflow.  

5.2. Evaluation of the NWM groundwater recharge 

In the NWM, infiltrating water from precipitation that leaves the soil column is the only source of 
water entering the NLRs. This percolation of vertical drainage into the NLRs varies horizontally per 
each catchment area based on other simulated components of the NWM, such as climatic forcing, 
evapotranspiration, soil type, or land surface slope. The NWM recharge through time expresses 
interesting trends when comparing values from 2008 for all five study areas, with those derived from 
GWAM of the NHPA [9, 13]. Figure 7 (a-e) below express the two main findings, 1) the difference 
in mean peak recharge entering the NLRs within our study area exceed values from the GWAM of 
the NHPA as much as 3x (Figure 7(c)), suggesting that infiltration is not being accurately partitioned  

  

Figure 7. 2008 mean areal recharge comparisons between the NWM and the GWAM of the NHPA for five study areas. 
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between components of runoff/interflow and recharge within the soil columns. 2) The increasing 
trend in recharge magnitude from west to east across the study areas (Figure 7 (a) -> (b) -> (c)) 
suggests that the NWM distribution of precipitation generally agrees with the inputs used in the 
GWAM. 

5.3. Current and alternate Non-Linear Reservoir discharge formulations  

The effects of applying Partitioning method to deep percolation on baseflow hydrograph were 
evaluated graphically and statistically. Graphical evaluation showed that the errors in magnitude 
decreased for both catchments after the application of the method. Reduction of the maximum flux 
to the NLR for both catchments using the method resulted in better agreement with baseflow 
observations. The partitioning of the deep percolation, however, was not able to deal with the offset 
issue seen between simulated and observed baseflow as seen in the figure below (Figure 8). The effect 
of the partitioning method was also indicated in statistical parameters (Table 3). It was observed that 
the method can reduce the magnitude errors in baseflow hydrograph irrespective of soil type. 

 

 Figure 8. a) Improved baseflow hydrograph with partitioning method for the catchments B (BFI: 0.786) for the year 2008, b) Improved 
baseflow hydrograph with partitioning method for the catchments E (BFI: 0.391) for the year 2008. 
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Table 3. Statistical analysis of baseflow hydrograph with the partitioning method. 

 
Catchment B Catchment E 

Raw Partitioned Raw Partitioned 

𝑅] 0.14 0.12 0.11 0.11 

RMSE (𝑚B/𝑠) 31.53 23.12 13.44 11.45 

 

Baseflow hydrographs derived from each alternative formulation were calibrated for the two 
catchments against the USGS hourly baseflow dataset. The calibrated baseflow hydrographs were 
evaluated based on statistical parameters. Baseflow hydrograph comparisons were conducted in reach-
scale and catchment-scale. For catchment B, it was observed that the Rorabaugh’s formulation 
performs much better than current NWM and alternate SWAT formulation. The RMSE value 
decreased by 15.72	𝑚B/𝑠 (23.70𝑚B/𝑠 → 7.98𝑚B/𝑠, Table 4) when the current NWM formulation 
was changed to Rorabaugh’s. As more specific hydrogeological condition is considered, it was also 
observed that Rorabaugh’s formulation was able to capture the peak timing well resulting in the 
improvement of R value (0.12 → 0.41, Table 5). SWAT baseflow formulation seems to have good 
performance in lowering the peak magnitude of baseflow hydrograph but the time discrepancy 
between the observed and SWAT formulation simulated peak got worse when compared to the 
current and Rorabaugh’s formulation. For catchment E, no noticeable differences were observed in 
the baseflow hydrographs between the current and alternate formulations which is also found in Table 
5. The hydrographs derived from each of formulations appeared almost the same in terms of capturing 
peak timing and of adjusting magnitude. 

 

Table 4. Statistical evaluation of functions against baseflow separation data (catchment B). 

 NWM function 
Rorabaugh’s  

function 

SWAT-modified 

function 

𝑅] 0.12 0.41 0.07 

RMSE (𝑚B/𝑠) 23.70 7.98 22.02 

 

Table 5. Statistical evaluation of functions against baseflow separation data (catchment E). 

 NWM function 
Rorabaugh’s  

function 

SWAT-modified 

function 

𝑅] 0.09 0.12 0.10 

RMSE (𝑚B/𝑠) 12.21 11.96 12.20 
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Figure 9. a) Comparison of baseflow hydrographs derived from each alternative formulation and baseflow observation separated from total 
streamflow using USGS groundwater toolbox (catchment B), b) Comparison of baseflow hydrographs derived from each of alternative 

formulations and baseflow observation separated from total streamflow using USGS groundwater toolbox (catchment E). 

6. Conclusion 

Preliminary results from the evaluation study shows that the NWM does a good job of estimating 
streamflow and baseflow in regions with clay soils where there is not a strong interaction between the 
stream and the underlying aquifer system. The model, however, struggles in predicting streamflow and 
baseflow in sandy regions, especially in big storm runoffs and drought conditions. This could be 
because of the model’s inability to generate overland flow in sandy soils resulting in all the precipitation 
that reaches the land surface to percolate to the NLR. The issue is compounded by the fact that the 
NLR, that is responsible for baseflow discharge, has near-zero storage or runoff delay because of 
which almost all of the water entering the NLR is discharge to the stream at the same time step. As a 
result, the model greatly overpredicts streamflow during big storm runoff events and possibly under 
predicts streamflow during drought conditions because of the lack of storage in the NWM. Further 
evaluation of the NMW streamflow prediction in drought conditions in regions where there is a strong 
connection between streamflow and the underlying aquifer is needed to generate a better 
understanding on NWM prediction in drought conditions. The NWM’s inability to generate adequate 
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overland flow in sandy regions was also demonstrated by the comparison of the NWM deep 
percolation loss to the GWAM for the NHPA which showed that the NWM greatly overpredicted 
groundwater recharge (deep percolation loss) in the central and eastern study catchments. 

Application of the partitioning method to the deep percolation from the NWM to account for 
subsurface interflow provided a better fit between the simulated and observed baseflow datasets. 
Moreover, application of the Rorabaugh’s function as an alternate formulation to estimate baseflow 
from the NLR provided a better fit when compared to the NWM current formulation and the SWAT 
formulation in catchment B. However, such effectiveness of using alternative formulations was not as 
definite in catchment E. This investigation into the groundwater component of the NWM shows that 
our approaches for improved hydrograph forecasting work better for sand vs clay soil types. Future 
work on alternative functions for the NLR could include similar evaluations as this work, in a variety 
of new physiographic provinces, and climatic trends than those observed in the NHPA study area.  
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Abstract: Floods are the most frequent natural disasters that occur in the United States, annually 
costing approximately a hundred lives and billions of dollars [1]. NOAA’s National Water Model is 
a hydrologic model that simulates real time and forecasted streamflow along with other hydrologic 
information for 2.7 million river reaches across the contiguous United States. This model has proven 
beneficial in forecasting when and where flooding can be expected as its terrain routing module 
operates at a spatial resolution of 250 m. However, in topographically complex regions and areas 
that experience precipitation induced flooding, a finer resolution is necessary to better predict flood 
extent and depth. This study aims to determine the difference between two different grid resolutions 
on the low gradient topography of Brownsville, Texas by using a 2D physics-based hydrologic 
model, Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). For these comparisons, a 50 m 
grid was used as the hyper-resolution simulation and a 250 m grid was used to emulate the NWM. 
Multiple rainfall intensities were chosen as different atmospheric forcings. Results indicated that the 
250 m resolution estimated larger inundation extent, whereas the 50 m estimated larger overland 
depth values and was able to better identify potentially inundated areas. Linear regression showed a 
statistically significant correlation between increasing flood threshold and specificity between the 
model. The increasing threshold with increasing between flood threshold during each rain events. 
Therefore, the estimates for inundation area and water depth in hyper-resolution modeling could be 
more accurate than those of the NWM during each rain events. 
  

1. Motivation 

“Floods are the most chronic and costly natural hazard in the United States, causing an average of 
140 fatalities and $5 billion damage each year” [2]. In an effort to better predict and mitigate damage 
caused by floods, hydrologic models have continuously been developed and enhanced. NOAA’s 
National Water Model (NWM) simulates observed and forecast streamflow for 2.7 million river 
reaches across the continental U.S. at a grid resolution of 250 meters. While this is considered a high 
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spatial resolution, many rivers and other hydrologic features tend to be on the order of tens of 
meters. Additionally, areas that contain minimal topographical changes and/or experience 
precipitation induced flooding, are more complicated to accurately model at this resolution. As 
urbanization increases throughout the country, especially in coastal regions, more people and 
property will become vulnerable to the effects of localized flooding. Therefore, it is essential for 
existing models to be improved upon in order to properly predict and assess inundation extent and 
depth in low gradient areas. Unfortunately, increases in resolution are accompanied by an 
exponential growth in computing time and power. To provide sufficient lead time to residents with 
the most accurate data possible, this project aims to determine when and how to necessitate a hyper-
resolution model (<100 m).  

2. Objectives and Scope  

2.1. Objectives 

The intention behind this research is to discover if there is a significant difference in flood inundation 
extent and depth between model outputs with grid resolutions at 250 meters and 50 meters in 
topographically complex, low gradient watersheds. To do this comparison, a 250 m grid resolution 
was chosen to emulate the resolution employed by the NWM, and a 50 m resolution was determined 
to be sufficient for the “hyper-resolution” model. Variations in rainfall intensity were incorporated in 
the model by using the NOAA Atlas 14 precipitation frequency data. The Gridded Surface/Subsurface 
Hydrologic Analysis (GSSHA) model prepared in the Watershed Modeling System (WMS) application 
was used to analyze these objectives. 

2.2. Case Study 

Brownsville, Texas was chosen as the area of interest for this research. Brownsville is a city located on 
the border between southern Texas and Mexico that is characterized by flat slopes and clay-rich soils 
which make the region especially susceptible to flooding [3]. In addition to the effects of topography 
and soil type, urban development is rapidly increasing in the area therefore causing drainage density 
to increase while also lowering soil permeability [3]. Although the NWM NHDPlus stream network 
is able to delineate larger drainage networks in the area, such as the Rio Grande River (RGR), 
Brownsville is unique due to small scale, hydrologically significant features called resacas. Resacas are 
old, secondary river channels of the Rio Grande that once transported excess water away from the 
river during times of high flow but have since been disconnected from the RGR. As flow was reduced 
by the construction of upstream dams and reservoirs, the resaca features remained and now play a 
significant role in drainage and overland flow mechanisms during large precipitation events.  

For this study, the watershed incorporating Town Resaca and Resaca de la Guerra was analyzed 
(Figure 1). While they are not directly connected to the Rio Grande River, they can still contain water 
due to rainfall events or pumping from the RGR. They can also be used to move floodwaters during 
storm induced flooding and/or major flooding on the RGR. These resacas are sensitive to precipitation 
events and can cause concerns about localized flooding. In addition, Brownsville is located near the 
Gulf of Mexico, and so elevational change over the watershed is minimal with a maximum elevation 
of 11 m in the Northwest corner of the watershed to sea level in the Northeast corner.  
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Figure 1. Watershed boundary (in yellow) of the Town Resaca and Resaca de la Guerra in Brownsville, TX. The western part of the 

watershed contains the more urbanized section of Brownsville, TX. The northeast corner contains the outlet of the resacas into the Brownsville 
shipping channel. Streamlines are designated in blue.  

3. Previous Studies 

There have been numerous reports and past studies evaluating the resaca networks and general nature 
of flooding in Brownsville. One study, conducted by Whitko, focused on the accuracy of flood 
modeling in the resacas utilizing high resolution LIDAR data and potential land use changes 
incorporated into a HEC-RES/HMS distributive model [4]. This study found that, in general, the 
simulated rainfall year floods generated a higher flood peak than expected, and that land use change 
through future urbanization would increase flood inundation. Another study, submitted to the city of 
Brownsville by Rust, Lichliter, and Jameson, analyzed the causes of flooding and reaction of the resaca 
and drainage structure networks to heavy rainfall events [5]. Several solutions were proposed that 
included increasing the size of the resacas through dredging and improving the hydraulic drainage 
structures. 

The number of studies that examined how changes in model grid resolution and the temporal 
resolution of precipitation events affected flash flooding have been scarcer, especially on the hyper-
resolution scale. Rafieeinasab et al., that compared the peak flow of a hydrograph in an urbanized 
landscape between resolutions [6]. The spatial resolutions compared in the study started at a resolution 
of 2 km and decreased to 250 m. The authors determined that a 500 m resolution was the best choice 
due to statistically insignificant increases in accuracy from 500 m to 250 m. Our study hopes to expand 
upon the aforementioned work in order to determine the effects of an even finer grid resolution on 
inundation extent prediction. It also has the ability to analyze factors such as time to flooding and 
flood duration times so that flood hazards can be better converted to flood risks. 

4. Methodology 

4.1. Terrain Pre-processing, TOPAZ, and Grid Creation 

The primary input files for a GSSHA rainfall/runoff simulation are the 2-D finite difference grid and 
accompanying surface elevations. The grid is a rectangular area that covers the extents of the 
watershed. 1-meter LIDAR data were obtained from the International Boundary and Water 
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Commission (IBWC) in 2011. The various files were merged into a single digital elevation model 
(DEM) that was resampled to 4 m in order to increase computational efficiency. This DEM was 
initially run through the Topographic Parameterization Program (TOPAZ), contained in WMS, to 
delineate the watershed boundary and stream network. However, due to the study area’s location, the 
topography is relatively flat. Additionally, several underground drainage structures exist that route 
water to an outlet point towards the Northeast. Predetermined flowlines incorporating proper 
drainage features from previous field studies were artificially burned into the 4 m DEM using the 
ArcHydro tool found in ArcMap 10.6. Stream burning is a common flow enforcement technique used 
to correct surface drainage patterns derived from digital elevation models (DEM). The technique 
involves adjusting the elevations of grid cells that are coincident with the features of a vector 
hydrography layer.  

Once burned, the DEM was imported to WMS and resampled again from 4 m to 6 m as this resolution 
significantly lowered computational time and power when running TOPAZ. After the watershed and 
streams were delineated, 2 different grids were created. In order to represent the resolution employed 
by the NWM, a 250 m grid cell size was chosen. A 50 m cell size was utilized for the “hyper-resolution” 
aspect after several model runs indicated resolutions greater than 50 m significantly increased 
computational time and power, but did not result in much output variability compared to a 30 m 
resolution. Hydraulic structures were then added to the model. Due to time constraints, all 142 
structures found in this watershed were unable to be incorporated; therefore, only weirs and culverts, 
structures that were deemed the most hydraulically important, were added to the model. Figure 2 
details the locations of important hydraulic structures and delineated hydrological features.  

 
Figure 2. 4-m LIDAR based elevation map showing the location of box-culverts and weirs along the stream channels in the watershed   
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4.2. Atmospheric Forcing 

To enable a more efficient model and minimize complications, the effects of evaporation and 
evapotranspiration were ignored as the average daily evapotranspiration rate for Brownsville was 
calculated to be 1.41 mm, inconsequentially small compared to the rainfall values [7]. With this 
simplification, the only atmospheric forcing driving the model was precipitation. In recent years, the 
National Oceanic and Atmospheric Administration have continuously updated the precipitation 
frequency estimates for the U.S. by using previous values found in technical memorandum NWS 
Hydro 35 (1997). NOAA has been updating these values for various regions of the U.S. since the early 
2000s and publishing them as Atlas 14 data. NOAA is currently working on Texas, but results won’t 
be published until the Fall of 2018. Therefore, a request for assistance was made to the National Water 
Center for this data. We were provided with data from Michael St. Laurent at UCAR CPAESS for 
precipitation frequency intervals of 2, 25, and 100 years at 6-hour (high intensity) and 24-hour 
durations (low intensity) (Table 1). The area of Brownsville fell under the Type III synthetic rain 
distribution [8]. The GSSHA model contains a built in Type III 24-hour distribution curve that was 
used for the 24-hour runs with storm frequency values converted into millimeters. The 24-hour curve 
was adjusted to fit a 6-hour rain event by taking every fourth time step from the 24-hour type III 
curve. 

Table 1. The Rainfall amounts associated with Storm Frequency  

Storm Frequency 24-h Rainfall Amount (mm) 

2-year 107.19 

25-year 223.50 

100-year 308.36 

 

4.3. Land Use and Soil Data 

Land use data were obtained from the National Land Cover Dataset (NLCD). Soil type and texture 
data were obtained from Natural Resource Conservation Services (NRCS) Soil Survey Geographic 
Database (SSURGO). Tools in Arcmap 10.6 were used to process the data and prepare GSSHA input 
files describing the physical characteristics of the watershed. Green and Ampt parameters of 
infiltration were based on information from NRCS soil classification and land use/cover classification. 
Infiltration rates are affected by land use, especially impervious areas due to urbanization. Soil types 
associated with these land use types are referred to as developed soil texture classifications. In order 
to analyze flooded conditions, initial soil moistures were set up to be 95% saturated. Figure 3 provides 
an overview of the complete model setup. 
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Figure 3: An overview of complete model setup. At the top, is the DEM (LIDAR data) imported into GSSHA used to determine 

elevation, watershed and stream channels. This was followed by importing Land Use and Soil type to determine soil properties. When these 
data sets were combined with atmospheric forcings, we had the necessary information to run GSSHA model (bottom). 

 4.5. Confusion matrix 

Model comparison was done by creating a confusion matrix. 50 meter resolution was considered as a 
reference image for all three rain events. The matrix compared the 50 m inundation pattern with that 
of the 250 m resolution at different flood depth thresholds. Table 3 represents the comparison done 
at a flood depth threshold of 1 meter. 
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Figure 4: Concept illustration of model results through the creation of a confusion matrix comparing inundated pixels under two grid 

resolutions 

This measure is equal to 100% when the two areas coincide. To perform these calculations, flood 
inundation rasters were produced from ASCII files obtained from model simulations. The boundary 
polygon derived from the WMS delineated watershed was used to extract the floodplain boundary 
area from each of the inundation rasters. All 250 m resolution rasters were resampled to 50 m grid. 
All rasters were classified using binary inundated/non-inundated classification for each pixel. With 
raster data classified at an identical resolution, true positive and false negative percentage were 
calculated. This comparison between two resolution raster grids were done for each rain intensity 
tested in the study.  

 4.6. Regression model to analyze the relation between test statistics at different flood threshold 

Confusion matrix at flood depth thresholds of 0.1 m, 0.5 m, 1 m, and 1.5 m were created. A linear 
regression model was done to analyze whether the test statistics obtained change with flood 
thresholds. The two test statistics considered in this case study were Specificity and Sensitivity. 
Specificity is, by definition, how often the 250 m model correctly predicted non-inundated pixels when 
these pixels were actually non-inundated in the reference image (50 m resolution). Sensitivity, by 
definition, is how often the 250 m model correctly predicted inundated pixels when the same pixels 
were actually inundated in the reference image (50 m resolution). 

5. Results 

5.1. Comparison of inundation extent and overland flow depth by visual interpretation 

In addition to the difference in inundated pixels, simulations at different resolutions also showed 
differences in water depth for identical rain intensity. For example, Figure 5 shows the overland water 
depth and inundation extent near the Town Resaca at the same location and time step for a 2-year, 
24-hour rainfall event; the top image is at a 250 m resolution and the one below shows a 50 m 
resolution. The two locations marked in red are topographic depressions in the area. It is apparent 
that the 250 m resolution run was unable to identify these locations as potentially inundated areas as 
compared to the 50 m resolution run. Conversely, the 250 m resolution overestimates inundation 
extent along the actual Town Resaca as evidenced by the outline of the individual grid cells visible in 
the top photo. Although the actual stream width is smaller than 250 m, it seems that the size of the 
individual grid cells caused inundation to extend further than necessary.  
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Figure 5. Comparison of inundation extent between 250 m Resolution Run over Town Resaca (Top) and 50 m Resolution Run over Town 

Resaca (Bottom) on a 2-yr, 24-hr rainfall event 

Figure 6 shows the overland water depth near the outlet; the top image shows the 250 m resolution 
and the bottom image shows the 50 m resolution at the same location and time step for a 100-year, 
24-hour precipitation event. The two locations marked in red show different flood inundation depths. 
The bottom image (50 m) shows severe overland depth, reaching values of approximately 3.5 m. 
However, the top image (250 m) displays an estimated maximum of 2.5 m for overland depth. Similar 
to the discussion above, the 250 m resolution simulates a larger flood extent, but lower overland depth 
(i.e. highest overland depth is 2.83m for 250 m resolution and highest overland depth is 3.91m for 50 
m resolution).  
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Figure 6. Comparison of overland depth between 250 m Resolution Run over Town Resaca (Top) to 50 m Resolution Run over Town 

Resaca (Bottom) on a 100-yr, 24-hr rainfall event 

From the visual interpretation, it is obvious that for the 250 m resolution, inundation extent is more 
widespread than the 50 m meter resolution, perhaps even overestimating at times. As a precautionary 
measure, the overestimated extent may be preferable as it encompasses a larger area; however, it may 
also cause false alarms for nearby residents and affect decisions made by various stakeholders.  
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5.2. Comparison of Inundation extent by using Confusion Matrix 

The results of the pixel-based inundation comparison are presented for three different rain events as 
a confusion matrix in Table 2. The confusion matrices present a binary comparison of flood 
inundation maps from the 250 m models against the 50 m models that list the number of True Positive, 
False Positive, False Negative and True Negative. It is important to note that the prevalence of 
inundated pixels between the two model runs are 4% for 2-year; 10.36% for 25-year rain and 12.85% 
for 100-year rain event. For 2 year, commonly inundated pixels were 1.33%; for 25-year, it was 4.11 
and for 100 year, it was 5.63%. These results indicate that with larger rain events, the percentage of 
agreement (i.e. commonly inundated pixels) between the two models increases. This could be because 
with more rain, larger volumes of water would cause more individual pixels to be inundated in both 
of the resolutions. 

Table 2. Confusion matrix demonstrating the comparison between 250 m and 50 m resolution.  

 

50-meter resolution model 

Non-inundated Inundated Total 

Pixel Percentage Pixel Percentage Pixel Percentage 
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2 year 

Non- 
inundated 38130 92.32 1103 2.67 39233 95.52 

Inundated 1519 3.68 548 1.33 2067 5.03 

Total 39649 96.00 1651 4.00 41300 100 

25 year 

Non- 
inundated 33622 81.41 2582 6.25 36204 88.15 

Inundated 3399 8.23 1697 4.11 5096 12.41 

Total 37021 89.64 4279 10.36 41300 100 

100 
years 

Non- 
inundated 30830 74.65 2983 7.22 33813 82.33 

Inundated 5162 12.50 2325 5.63 7487 18.23 

Total 35992 87.15 5308 12.85 41300 
100 
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Furthermore, with an increase in rain intensity, the percentage of overprediction also increases. For 2 
year, it was 3.68%; for 25 year it was 8.23%; and for 100 year, it was 12.5%. This is expected and 
supports the previous results showing that the 250 m resolution overpredicts the flooded pixels as 
seen in the 25-year flood where the 250 m model run contains 5096 inundated pixels compared to 
4179 on the 50 m.  

Linear regression modeling was performed to examine if the test statistics between the two models 
varied with the flood thresholds. Significant R-square values in Specificity indicates that with 
increasing thresholds the chances of 250 m to overpredict the inundated pixels increases. Therefore, 
it would be advisable to run a hyper-resolution modeling during severe water depths.   

Insignificant R-square in regression model for sensitivity at different flood threshold indicates the 
uncertainty of sensitivity (or chances that 250m could predict it the inundated pixels correctly) with 
increasing flood thresholds, during each rain events. In other words, with increasing flood thresholds, 
there exist no relation that could project whether the sensitivity would increase or decrease. Had there 
been more sets of data, a possible statistically significant relationship could be established. Or it is also 
possible that there lies no relation between flood threshold and sensitivity at all. Albeit, with currently 
available datasets (three flood thresholds), the relationship seems insignificant.     

Comparing both the test statistics, it can be inferred that chances that 250m could overpredict might 
rise high (due to strong coefficient of determination) while, there is no implied evidence (due to lower 
coefficient of determination) that it could predict correctly. Therefore, it can be concluded that hyper 
resolution modeling is effective in predicting the critical water depths during each rain events because, 
the 250 m resolution have higher chances of overprediction as well as false predictions.   

Table 3. Linear regression model to analyze how test statistics produced vary with the flood thresholds 

 

 5.3. Comparison of Hydrograph 

When comparing the hydrographs at the outlet point, the difference in resolution of the models was 
apparent. As seen in Figure 7, the peak discharge for the 50 meter resolution was nearly double that 
of the 250 m discharge. Three likely causes exist for the major increase in discharge. First, the coarser 
resolution (250 m), water had to travel further to reach a channel as the grid cell size affected spatial 
extent. This would allow for a lower peak discharge that would then steadily decrease, as evidenced in 
the figure. Additionally, as water remained on the land for a longer period of time, it could better 
infiltrate the soil. The amount of infiltration water on the 25-year, 24-hour, 250 m grid was 6.27x10-3 
km3 compared to 5.58x10-3 km3 on the 50 m grid at the same flood event and rain duration, thereby 
lowering the peak of the hydrograph. This pattern was evident on each pair of different resolution 
model runs. Second, the larger, individual grid cell size allowed more water to move back onto the 
land when flood inundation occurred, thus reducing the movement and amount of water draining 
towards the outlet. Finally, we hypothesize that the lower peak discharge may be a result of changes 
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in the discretization and averaging of land use/soil parameters at higher resolutions. Both the NLCD 
and SSURGO data have a resolution of 30 meters. When these parameters are combined onto a grid, 
unique ID values are generated for every combination of soil type and land use, thereby affecting 
individual grid cell hydraulic conductivity values. When these parameters were combined on a 250 m 
grid, 69 different values were generated; however, the 50 m grid generated 83 values. When a spatial 
averaging was performed on hydraulic conductivity between 50m and 250 m with values of 0.157 
cm/hr and 0.169 cm/hr were found respectively. This result strengthens the conclusion that more 
water was allowed to penetrate the soil and lessen the discharge at the outlet. It should be noted that 
these hydrographs assume that the streams are empty at the beginning of the rainfall which would 
lessen the peak flow discharge.  

   

 
Figure 7. Comparing how different resolutions affect the hydrographs at the watershed outlet.  

 

6. Conclusion 

The percentage of agreement between two model increased with increasing rain events. The same was 
seen for the over predicted pixels by 250m. Unable to run multiple simulations (under same rain 
events) due to time constraints prevented us to identify, when these agreement and disagreement 
between two resolution makes statistically significant differences.  

The results of the confusion matrix demonstrated that there is no statistical between two grid domains 
of the models. Since they do not show significant correlation at different three flood thresholds. 
However, it was noted that hyper-resolution (50m) was able to capture a larger range of water depths 
as well as limited the area of infiltration. Therefore, we conclude that there was no rain level at which 
initiating the higher resolution would be helpful predicted flooding before the rainfall. But once a 
known amount rainfall has occurred it would prudent to initiate a hyper-resolution model to more 
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accurately predict the depth and extent of infiltration.   

Since the study area does not contain stream or rain gages, it was difficult to validate which model 
provided greater accuracy. However, the computational analogy of GSSHA gives the indication that 
a lower resolution of the model would cause more water to flow through the stream. We found that 
a 50 m resolution run over this ~100 km2 watershed is not the most computationally efficient. 
Therefore, the future plan would be to incorporate a high performance, parallelizable model, such as 
AD-Hydro, to decrease computational time. In addition, comparing a known flood to the simulated 
flood would be useful in validating the research even further.  
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Abstract: In order to facilitate the National Water Center’s mission to pursue hyper resolution 
hydrologic/hydraulic modeling, this work presents an urban flood inundation study using hyper 
resolution models to quantify the effects of subsurface storm drainage infrastructure. As urban 
populations increase globally, cities change natural flooding mechanisms through increased 
impervious land cover, detention and retention ponds, and storm sewer networks. Such expansion 
affects flood characteristics such as peak magnitude, time to peak, and the inundation area. This 
study addresses the sensitivity of these variables to the inclusion of subsurface storm drainage 
systems in hyper-resolution modeling. Using the Gridded Surface-Subsurface Hydrologic Analysis 
(GSSHA) Model in the Town Resaca basin in Brownsville, Texas, we show that including the storm 
sewer infrastructure is both feasible and beneficial for accurate flood inundation mapping in urban 
areas. However, at storm return periods above 5 years, the additional benefit in flood inundation 
accuracy is limited. At storm return periods less than the critical return period of 5 years, hyper 
resolution models of storm sewers can be a critical addition to urban flood inundation studies. 

 

1. Motivation 

An increasing global population strains natural resources and land availability, causing rapid 
urbanization. The associated increase in impermeable surfaces heightens flood-related damage caused 
by quantity and movement of the stormwater runoff. The former is governed by the type of the land 
use; the latter is governed by the density, size and characteristics of channels and provision of storm 
sewerage [1]. Increased urbanization results in higher flood peak, higher flood volume, and lower time 
to peak indicating a higher risk of flooding [2]. The subsurface storm drainage network has to move a 
higher volume of water effectively to prevent any flooding event. To address this problem, hydrologic 
models are used to study and forecast events that may pose a threat to the community. Given that the 
stormwater drainage system plays a vital role in the movement of runoff, this research evaluates the 
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difference between model runs with and without this network as part of the watershed. The authors 
aim to identify a storm recurrence interval at which hyper resolution flood inundation modeling with 
the subsurface storm sewer network ceases to improve quality of inundation predictions. 

2. Objectives and Scope  

The objective of this study is to quantify the sensitivity of hyper-resolution hydrologic models to the 
presence of subsurface storm drainage systems. By running the Gridded Surface-Subsurface 
Hydrologic Analysis (GSSHA) Model [3] on a hyper resolution scale, the impact of subsurface 
hydraulic structures on low-gradient watersheds can be quantified. Modeling the same scenario 
without the stormwater drainage system provides the benchmark for such comparison. By varying the 
design storms for each model scenario, the authors aim to identify a threshold return period after 
which the effect of storm sewers in the model is insignificant to flood extent. This return period is 
expected to be the design storm event used by cities and consulting engineers. Identifying this return 
period can help the National Water Center improve water prediction. 

The study area is the Town Resaca basin in Brownsville, Texas, with an area of 5.88 sq. mi.  A 
distinctive characteristic of the Lower Rio Grande Valley is its Resaca System. Resacas are historic 
channels connecting to the Rio Grande, that served to transport water away from the river during 
floods. Currently, the water flowing through these Resacas is mostly runoff generated by precipitation 
or the water pumped from the river. A subset of the system, Town Resaca, is shown in Figure 1.

  
Figure 1. Town Resaca flowline is shown in blue. The central, straight part of the flowline is a culvert under a highway. The watershed 

outline is delineated in orange.  
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The City of Brownsville is a challenging test case for hyper-resolution modeling due to the following 
reasons. Firstly, the low elevation difference throughout the Texas Gulf Coast creates a scenario in 
which even a small storm causes flooding [4]. Secondly, the storm sewer system in Brownsville has 
proved inadequate historically, with street flooding occurring regularly during high intensity storms. 
Finally, Lower Rio Grande Valley faces political controversy, as the Rio Grande is not only a primary 
water source, but also an international boundary, creating complex water rights problems in the region. 

3. Previous Studies 

The study of urban flood inundation has long focused on changes in impervious cover [5], but has 
largely neglected the effects of man-made flood control measures such as storm sewer networks, due 
to high computational resources and time in modeling storm sewers at a fine scale. Recent studies of 
flood inundation with storm sewer networks have largely been localized [6], or use subcatchment level 
hydrologic models (such as EPA SWMM), to calculate overland water depth [7, 8]. However, recent 
improvements to GSSHA allow the introduction of storm sewer systems using a SUPERLINK 
approach [9, 10]. Using the SUPERLINK configuration on GSSHA, urban storm sewers are shown 
to increase the peak discharge in urban areas for moderate and high precipitation storm events, but 
show no difference in extreme events [10, 11]. Studies of storm sewer systems in hyper resolution 
modeling have focused primarily on the stream hydrograph, generally ignoring inundation depth and 
extent.  

As the Lower Rio Grande Valley, TX remains an understudied area, region-specific studies are sparse. 
Brownsville’s Flood Protection Plan examines the state of flood-related problems in Town Resaca as 
recently as 2011 and highlights the use of hydraulic and hydrologic models in flood studies. Certain 
areas in Town Resaca are known to flood for 25-year events, with some experiencing inundation at 
even 2-year storms [12]. Creating an accurate model of the flood inundation at various return periods 
is beneficial for Brownsville to facilitate further flood control measures. 

4. Methodology 

4.1. Initiation of the GSSHA Model 

In order to run the GSSHA model with storm sewers, several components had to be initialized for 
the study area. The DEM and the channel cross sections were prepared specially for input into 
GSSHA. The storm sewer network was adapted from shapefiles into a SUPERLINK format used by 
GSSHA.  

4.1.1. Adjustment of DEM 

This study uses the hydrologic model GSSHA due to its ability to accurately simulate the sewer system 
present in the Brownsville watershed. For a successful model run multiple inputs are required, such 
as: Digital Elevation Model (DEM), land use and soil data, precipitation, channel cross-sections and 
sewer system information. The DEM used for the simulation was a 1 meter resolution LiDAR image 
of the Brownsville area. The resolution of this dataset was ideal for the requirements of a hyper-
resolution model run. The pre-processing of the DEM was made using Arc-GIS and the Arc-Hydro 
toolbox. This step required detailed attention because the characteristics of the Resaca system 
complicated the delineation of the streams. The low elevation gradient in the area created a scenario 
where the Topographic Parameterization Program (TOPAZ) could not recognize some streams, 
leading to an incorrect delineation of the watershed in GSSHA. This problem was solved by burning 
the streamlines into the elevation dataset with the DEM Reconditioning option in Arc-GIS.  

4.1.2. Addition of supplementary information 
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After successfully delineating the watershed in GSSHA, 27 previously surveyed channel cross sections 
were added to the model. The availability of this dataset provides the opportunity to create a model 
that represents the real conditions more accurately. In the middle part of the Resaca, the stream flows 
in a culvert for a distance of 1.27 miles approximately. This hydraulic structure was modeled as a 
rectangular channel throughout its length with culvert specifications at the beginning and end, with 
no overbank flow in this underground section. The soil and land use data were acquired from the 
Natural Resources Conservation Service and National Land Cover Database respectively. The grid 
size selected for the model run was 10 meter to produce results that meet the hyper-resolution criteria.  

4.2. Compilation of subsurface storm drainage network 

4.2.1 Preprocessing of storm sewer network 

The subsurface storm drainage network in Brownsville had minimal existing information, requiring 
significant preprocessing before inputting into GSSHA. The available data was limited to a) surveyed 
storm sewer inlet locations, b) a preliminary shapefile of the storm sewer pipe network, without any 
network characteristics, c) georeferenced storm drainage system plans. The storm sewer inlet locations 
were validated using Google Earth before any further processing. 

To minimize the number of inlet points in the sewer network, inlets were grouped at road intersections 
using a Python script and ArcGIS. All surveyed inlet locations within a 50 ft radius were combined 
into one point with multiple grate inlets. The pipe network was manually edited to split pipes at bends, 
junctions, and inlets. Topology relationships through ArcGIS forced the inlet locations to match up 
with pipe vertices where possible, forcing inlets to align with road intersections. The georeferenced 
city sewer plans were used to add pipe diameter information where available. Missing or contradictory 
dimensions were inferenced based on outlet locations and assumed flow directions.  

A Matlab script was developed to calculate the flow direction in each pipe based on pipe diameters, 
and nearest outlet location. After manually entering outlet nodes, each upstream pipe was identified 
using a recursive tree algorithm and assigned a flow direction based on pipe diameter and distance to 
outlet. This script greatly reduced manual entry and human error and provides a reliable method of 
modeling pipe flow directions from minimal information. The final flow directions and pipe 
dimensions can be seen in Figure 2. 

4.2.2. Calculation of pipe invert elevations 

As GSSHA requires pipe invert elevations at each node, a Matlab script was developed to calculate 
approximate elevations based on pipe flow directions. Using a similar recursive tree algorithm as the 
flow direction calculation, the invert elevation at the outlet was assumed relative to the ground 
elevation, and the invert elevation at each upstream node was calculated using a slope of 0.0125%.  
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Figure 2. The pipe network and flow directions for the Town Resaca basin are shown. 

 

4.2.3. Conversion of sewer network for GSSHA input 

After preprocessing the sewer network into a directed graph with invert elevations, the pipe network 
had to be digitized into a format legible by GSSHA. In the Watershed Modeling System, or WMS, the 
sewer network is automatically generated based on cell to cell connectivity by individually adding pipes 
into the network and parametrizing them based on the geometry associated with the location of nodes. 
As WMS requires pipes, inlets, and outlets to be manually drawn into the GUI, we pursued adding the 
storm sewer network file externally, based on the SUPERLINK model used in GSSHA. 

To simulate storm and tile drains, the SUPERLINK model [7] is implemented into GSSHA. It solves 
the full-dynamic form of the Saint Venant equations in one dimension and employs the Preissmann 
slot to extend the open channel flow assumptions to closed conduits flowing full and surcharged [13]. 
In the SUPERLINK model, the water flow through the storm drains is a transformation of the 
overland flow through inlets. The SUPERLINK model includes four types of network components: 
superlinks, superjunctions, links, and computational nodes. Storm sewers are designed as superlinks 
connecting superjunctions. Types of superjunctions include inlets/manholes, outlets, and other critical 
locations. However, grate inlets along roadways are considered as computational nodes along the 
superlink. Node behavior is determined by the number of grates, as either orifice-type or weir-type.  

The subsurface storm drainage system is connected to the stream network based on the stream 
link/node structure, where storm sewer outlets transfer water to the stream at stream nodes. 
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Therefore, each outlet contains information on the connecting stream link and node, the ground 
surface elevation, and the pipe invert elevation. Similarly, the inlets have the ground surface elevation, 
pipe invert elevation, and grid location. The grid location connects the inlets to the overland flow by 
transferring some fraction of water based on number of grate inlets.       

Finally, in order to further simplify the pipe network for import into GSSHA, short pipes created to 
connect an inlet node to a road intersection node were removed. Pipes with no more than two 
connecting pipes were combined into one superlink, thus reducing the number of pipes significantly. 
This change can be seen in Figure 3 below, and the changes to the pipe network can be seen in 
supplementary information 

 
Figure 3. Histograms of pipe length distribution (a) before and (b) after simplifying superlinks 

The GSSHA system can handle detailed hydrologic and hydraulic information, including the storm 
sewer network, surveyed channel cross sections, and hydraulic structures. Although including each of 
these components increases the accuracy of the model, it significantly increases computational time. 
Given a limited time frame, the authors intended to provide a reliable comparison of flood inundation 
with and without the subsurface storm sewer network, forcing us to run models without the hydraulic 
structures and weirs that exist on Town Resaca. However, each run is on a hyper resolution (10 m) 
with a complex sewer network and with surveyed channel cross sections.  

4.3. Atmospheric Forcings  

Synthetic rainfall events developed by U.S Department of Agriculture (USDA) Soil Conservation 
Service (SCS), also known as National Resources Conservation Service (NRCS), are commonly used 
for drainage design [14]. Four synthetic storm distributions (I, IA, II, and III) are available for the US, 
each assigned to a geographic boundary and Brownsville, the target study area, is located in the type 
III boundaries. Type III distributions [15] are based on Hydro-35 (1977) and TP-40 (1961).  

Storms with various return periods (i.e. 2-, 5-, 10-, 25-, 50-, 100-, 250-, and 500-year) are incorporated 
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in this study. A wide distribution of return periods is considered in order to find a pattern of flood 
extents with and without storm sewers incorporated in the model. These specific return periods were 
chosen because they are common design return periods for various infrastructure. Storm depths over 
24 hours are extracted from Hydro-35 report and are presented in the following Table 1. Figure 4 
shows the Type III rainfall distribution used in this study. 

 
Table 1. Storm return periods and associated precipitation depths based on Hydro-35 Report 

Return period 
(yrs) 

2 5 10 25 50 100 250 500 

Rainfall depth 
(mm) 

91.44 133.35 165.1 203.2 241.3 279.4 330.2 381 

 

  
Figure 4. Rainfall distribution over time for Type III areas. 

 

4.4. Running GSSHA 

Using the finalized GSSHA model, several precipitation return periods were tested with and without 
storm sewers. After testing 2-, 5-, 10-, 25-, 50-, and 100-year storms, a threshold return period above 
which the storm sewer network ceases to improve flood inundation is expected. The authors expect 
this return period to be around the design period of the storm sewers (or approximately 5 years). 
However, for higher return periods, the storm sewer network may alleviate some road inundation.  
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5. Results 

5.1. Hydrographs and overland water depth grids for 2-year storm with & without storm sewers 

This section highlights the methodology to be used to evaluate the flood inundation rasters produced 
as an output of the GSSHA model, based on the 2-year, 24-hour storm. Figure 5 compares the stream 
outlet hydrographs with and without the storm sewer network. Figure 6 shows a comparison of the 
flood inundation grid for each simulation. 

 

 
Figure 5. Stream outlet hydrographs for no storm sewers (solid blue line) and with storm sewer network (dotted blue line), and rainfall 

hyetograph for 2-year, 24-hr storm Note that the hydrograph peak discharge is higher with storm sewers, with a higher total volume in the 
stream. Other hydrographs are provided in supplementary information. 

 

Based on the streamflow hydrograph, the storm sewer network put in place is functioning as expected, 
by increasing the peak discharge and the total volume in the stream [10]. At a 10 m grid resolution, 
the impact of storm sewers on minimizing street flooding is apparent, especially for the low return 
period storm shown here. For higher return periods, this difference decreases. These can be seen in 
the supplementary information provided. 
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Figure 6. Flood inundation maps for 2-year, 24-hour storm shows with and without storm sewers. Specific neighborhoods with severe 

flooding are highlighted.  

 

5.2. Inundation area comparison 

Figure 7 shows the inundated area for each storm return period, for both storm sewer and no storm 
sewer simulations. It is clear that the difference in inundated area with storm sewers and without storm 
sewers decreases for higher return periods in the 24-hour storm, especially. The difference is less 
noticeable in the 3-hour storms. 

 
(a) (b) 

Figure 7. Inundated area comparison for (a) 3-hour storm and (b) 24-hour storm. 
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5.3. Confusion matrix analysis 

At this point, we have created all of our model runs and are waiting for them to complete in order to 
conduct the quantitative analysis on the flood inundation rasters. Two approaches of flood inundation 
evaluation were used: 1) comparison of inundated raster cells, and 2) comparison of inundated address 
points between storm sewer and no storm sewer runs. Both approaches are evaluated using a 
confusion matrix, with the storm sewer inundation map taken as the benchmark. The elements of the 
matrix are summarized in Table 2 below. 

 
Table 2. Descriptions and consequences of possible combinations of flood extents from storm sewer & no storm sewer simulations. Each 

element is based on the storm sewer flood extent taken as the truth. 

Element Flooded in 
Storm Sewer 
Simulation 

Flooded in No 
Storm Sewer 
Simulation 

Description/Consequences 

True Positive (TP) Yes Yes Correctly identified flooded areas 

True Negative (TN) No No Correctly identified not flooded areas 

False Positive (FP) No Yes Superfluous flood threat causes distribution 
of resources away from areas in need. 

False Negative (FN) Yes No Flood threat is real but not modeled, leaving 
areas unprepared for response. 

 

5.4. Confusion Matrices for 24-hour storms 

The confusion matrices for the (a) grid cells and for the (b) address points are given in Table 3. 
Currently only the results for the 2-, 5-, and 100-year, 24-hour storm are available. To highlight specific 
neighborhoods/city blocks where storm sewer modeling is especially important, the address point 
confusion matrix is depicted on a map in Figure 7. Once all the return periods are run at a 10 m scale, 
we will be running a Signed Rank hypothesis test to determine if the inclusion of storm sewers makes 
a significant difference on the flood inundation rasters, as well as a Kruskal-Wallis test for distribution 
between the flooded cells for runs with and without storm sewers. 

Figure 7 gives the false positivity calculated from the confusion matrix. A peak in false positivity 
indicates the critical return period for each storm duration. For a 24-hour duration, a peak is clear at 
5 years. However, for a 3-hour duration, a peak occurs at 25 years but is not much different from the 
other return periods, so a critical return period is difficult to identify. 

In Figure 8, the results of the address point inundation study are given. This highlights specific 
addresses where the storm sewer network is helping alleviate flooding. At higher return periods, we 
expect spatial trends to arise in neighborhoods that are either more or less susceptible to flooding than 
the current non-storm sewer flood inundation standard suggests.  
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Table 3. Confusion matrices for each 10 m run for 24 hour storms in (a) flood grid cells and (b) address points and for 3 hour storms in (c)  

flood grid cells and (d) address points using a 1 ft threshold for inundation. Storm sewer runs are included as ss while runs without storm 
sewers are nss. Flooding is indicated by f and no flooding is indicated by nf. 

(a) Number of 10 m x 10 m raster cells - 24 hr 

 
(b) Number of address points - 24 hr 

 
(c) Number of 10 m x 10 m raster cells - 3 hr 

 
(d) Number of address points - 3 hr 

 
 

Figure 7. Comparison of false positivity index across return periods for both 24-hour storms (a) and 3-hour storms (b). 

(a) (b) 
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Figure 8. Map of address point confusion matrix for 2-year, 24-hour storm at 10 m resolution. Green points are false positives, showing 
where the storm sewer network is alleviating flooding. Red points are flooded with storm sewers but not flooded without storm sewers (none 

visible at this return period) 

 

6. Conclusion 

This work demonstrated that modeling subsurface storm drainage networks in hyper resolution 
models is not only feasible but also valuable for flood inundation studies. A basic sewer network was 
transformed into the SUPERLINK format used by GSSHA to model storm sewers. It is clear that at 
increasing return periods, the effectiveness of the storm sewers in preventing inundation decreases, as 
the number of raster cells where flooding is avoided decreases.  

Modeling storm sewer networks as a part of hyper resolution flood inundation studies conducted by 
the National Water Center can be an effective way to address growing flooding concerns in the United 
States. However, the authors suggest an integration of the SUPERLINK framework in a triangulated 
mesh model such as AD-Hydro. Although the GSSHA framework is able to handle the storm sewer 
network in Town Resaca, it required significant computational time and resources.  
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Supplementary Materials:  

S.1. Distribution of Superlinks before and after simplification 

 
Full network of storm drains in Town Resaca. Inlets are shown by red dots whereas outlets are shown by blue dots. 

All of them are considered as Superlinks and Superjunctions (1042 Superlinks and 1188 Superjunctions). 

 

 
Simplified network of storm drains in Town Resaca. Inlets are shown by red dots, outlets are shown by blue dots and 

green dots indicate computational nodes. Some of them are considered as Superlinks and Superjunctions (591 
Superlinks and 633 Superjunctions). 
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S.2. Additional Stream outlet hydrographs for no storm sewers (solid blue line) and with storm 
sewer network (dotted blue line) 

 
Hydrographs for 24-hour storm. 
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Hydrographs for 3-hour storm 
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S.3. Inundation rasters and confusion matrices  

 
Flood grid rasters for each return period for 24-hour storms, to compare inundated areas. 

 

 
Address points confusion matrix results for 24-hour storm. 
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Address point confusion matrix results for 3-hour storm. 
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Abstract: Homogeneous hydraulic routing schemes are subject to trade-offs between 
computational accuracy and resource consumption. In operational environments, such as with the 
National Water Model (NWM), accuracy is important, while computational efficiency and 
robustness are imperative. A heterogeneous routing scheme could theoretically give forecast centers 
the advantage of preserving accuracy while conserving resources by only implementing the Dynamic 
Wave model when it provides a significant increase in accuracy. This study proposes that there are 
instances when the Dynamic Wave or Diffusive Wave approximations are not necessary to produce 
sufficiently accurate results, and that Dimensionless Scaling Parameters (DSPs) can be used to 
initiate transitions between the Dynamic, Diffusive, and Kinematic Wave routing methods. A 
framework is constructed to investigate the relationships between the terms of the Saint-Venant 
momentum equation and DSPs. The framework automates simulation of the MESH model to 
produce a sample of points spanning a range of hydraulic scenarios. The workflow then analyzes 
that sample, both visually and statistically. It should be emphasized that the sample population 
considered in this work does not cover the full spectrum of all possible scenarios. The focus here is 
to establish the approach that could be expanded upon through a follow up effort. It is seen that 
the full Dynamic Wave provides unique accuracy over the Diffusive and Kinematic Wave models 
for only ~5% of sample cases, and the Diffusive Wave provides unique accuracy over the Kinematic 
Wave for ~75%. Histograms at different positions relative to transition thresholds show variable 
ranges for DSPs, primarily the Courant and Froude number, and may be interpreted as a justification 
for a routing scheme decision. Principal component analysis reveals redundant DSPs and 
demonstrates potential to statistically relate DSPs and terms of the momentum equation.  Future 
work may utilize the framework established to capture a sample that better explores the entire 
parameter space and incorporates considerations for additional DSPs. 

 

1. Motivation 

Hydrologic and hydraulic model forecasts inform decisions regarding public health and safety, and 
management of watersheds and water resources. Decisions concerning public health and safety, as in 
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the cases of flood and evacuation warnings, are often time sensitive and have consequences which 
may immediately impact preservation of life, economy, and public perception of the efficacy of local 
leadership. Thus, forecast accuracy and computational efficiency of hydraulic models are subjects of 
particular interest. 

The Saint-Venant equations, which govern conservation of flow volume and momentum throughout 
a channel, are used in one-dimensional flow-routing. The momentum equation is nonlinear, and while 
numerical methods reduce computational complexity, solving the full momentum equation, or 
Dynamic Wave equation, is computationally expensive relative to more simplistic models. The 
Diffusive Wave and Kinematic Wave equations are simplified forms of the momentum equation that 
are used in lieu of the Dynamic Wave equation to improve computational efficiency. Both the 
Diffusive Wave and Kinematic Wave neglect the effects of inertia, and the Kinematic Wave 
additionally neglects pressure gradient (P.G.) effects. While literature presents criteria for 
appropriating routing methods to different river wave types [1][2], the limitation of current routing 
schemes requiring selection of a single routing scheme to be implemented throughout the model 
domain and time frame forces a trade-off between computational cost and accuracy where flow 
conditions vary over time and space. One possible form of the Saint-Venant equations is provided 
below: 

 
𝜕𝑄
𝜕𝑥 +

𝜕𝐴
𝜕𝑡 = 0																																													(1)	 

 
𝜕𝑄
𝜕𝑡 +

𝜕
𝜕𝑥 a

𝑄]

𝐴 b + 𝑔𝐴
𝜕𝑦
𝜕𝑥 − 𝑔𝐴W𝑆@ − 𝑆fX = 0																																												(2)	 

 

 

𝑄 = 
𝐴 = 
𝑆@ = 
𝑆f = 

𝑦 = 
𝑥 = 
𝑡 = 
𝑔 = 

𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒	[𝑚B𝑠?L] 
𝑓𝑙𝑜𝑤	𝑐𝑟𝑜𝑠𝑠	𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑎𝑟𝑒𝑎	[𝑚]] 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙	𝑠𝑙𝑜𝑝𝑒 
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛	𝑠𝑙𝑜𝑝𝑒 
𝑓𝑙𝑜𝑤	𝑑𝑒𝑝𝑡ℎ	[𝑚] 

𝑑𝑖𝑠𝑡𝑎𝑐𝑒	𝑎𝑙𝑜𝑛𝑔	𝑐ℎ𝑎𝑛𝑛𝑒𝑙	[𝑚] 
𝑡𝑖𝑚𝑒	𝑒𝑙𝑎𝑝𝑠𝑒𝑑	[𝑠] 

𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	[𝑚𝑠?]] 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎	𝑇𝑒𝑟𝑚 =
𝜕𝑄
𝜕𝑡 +

𝜕
𝜕𝑥 a

𝑄]

𝐴 b 

𝑃. 𝐺. 𝑇𝑒𝑟𝑚 = 𝑔𝐴
𝜕𝑦
𝜕𝑥 

𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐	𝑇𝑒𝑟𝑚 = −𝑔𝐴W𝑆@ − 𝑆fX 

 

A heterogeneous routing scheme capable of transitioning between routing methods would eliminate 
the need to choose an absolute routing method. Determining the transition point, or threshold of 
potential error accrued by use of Diffusive or Kinematic wave models, presently requires computing 
the solution to the full momentum equation, rendering routing method transition ineffectual. A 
computationally inexpensive surrogate, or set of surrogates, associated with relative importance of the 

 

Dynamic	Wave 

Diffusive	Wave 

Kinematic	Wave 
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inertia, P.G., gravity and friction is a desirable solution to this problem. 

2. Previous Studies 

An approach using seven Dimensionless Scaling Parameters (DSPs) to differentiate between various 
river wave types was introduced by [3]. The DSPs, when written in a dimensionless form, indicate the 
relative importance of friction, inertia, and P.G. effects on a river wave. These DSPs are presented in 
Table 1, with their physical interpretation presented to show how each highlights part of the friction-
inertia balance. While previous work depended on case study measurements to construct a framework 
of how each DSP corresponds to a specific wave type (Bulk, Dynamic, and Gravity waves), the study 
that follows utilizes a modeling framework. This framework allows for a systematic inclusion of 
physical river and wave characteristics to identify the ranges of DSP values that correspond to 
transitions between the Kinematic, Diffusive, and Dynamic Wave. 

 
Table 1. Description of the seven dimensionless scaling parameters taken from literature [1]. The physical meaning of each term is presented 

in the context of differentiating between wave types. 
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3. Objectives and Scope  

The main goals of this research are as follows: 

1. Ascertain that the Dynamic and Diffusive Wave models are not required to obtain an 
accurate approximation of the solution to the full momentum equation at all locations 
along a channel and all realizations within a designated time frame. 

2. Define relationships between DSPs and relative magnitudes of inertia, P.G., and 
kinematic terms to determine potential thresholds that may serve as a transition signal in 
a heterogeneous routing scheme.  

This study further explores the relationship between DSPs presented in [3] and the terms of the 
momentum equation by generating data from a series of modeled scenarios, or experiments, using a 
theoretical channel. Experiments cover a range of typical channel characteristics and flow conditions 
that fall under M1 profiles. Extreme scenarios, including adverse slopes, contractions and expansions, 
and chutes are not represented by the data generated for this study. Details about data generation and 
parameter ranges can be found in the Methodology section. Processed data was then used to visually 
and statistically relate DSP values to the relative significance of individual momentum terms.  

4. Methodology 

This study implements a workflow to investigate the relative significance of the terms of the 
momentum equation, and if a relationship exists between those terms and DSPs. The workflow was 
purposely created with the potential of being reconfigured into a heterogeneous routing scheme 
decision tool for use in an operational environment, such as with the NWM. For this reason, a 
modularized approach was taken to lay out the developmental and operational workflows seen in 
Figure 1. The modules that comprise the developmental workflow are the subject of the rest of this 
study. 

To study if the Dynamic or Diffusive Waves are always required, the developmental workflow (Figure 
1, left pane) is needed to automate the generation of momentum term and DSP data for a wide range 
of scenarios. A data generator module was created to produce a range of initial flow conditions and 
channel characteristics. The produced datasets served as inputs into the MESH model (a numerical 
model that solves the full Dynamic Wave equation, [4]), which was also automated through a 
simulation module. Automation of data generation and model simulation allowed for hundreds of 
scenarios to be considered. MESH output was then fed into a pair of process modules to calculate the 
momentum terms and DSPs. A final relation module was created to investigate if relationships existed 
between momentum terms and DSPs, both visually and statistically. Each one of these modules is 
explained in further detail.  
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Figure 1. Developmental workflow (left) for utilizing the MESH model to identify relationships between wave types and DSPs, with the 
operational workflow (right) being able to use DSPs as a decision tool for determining sufficient wave type in a heterogeneous routing scheme. 

 

4.1. Experimental Setup & Input Data Generation Module 

The study’s experimental setup added simulation automation features to the MESH model. The 
MESH model solves the full momentum equation for a single scenario with a specific set of channel 
and flow conditions by using the predictor-correction numerical scheme [4]. To guarantee that the 
version of the model used for this study simulated as expected, the MESH model was first run for 
scenarios in literature. Successful recreation of the scenarios seen in Figure 2 provided sufficient 
confidence in the model that it could be used for experimental purposes. 
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Figure 2. Examples (A, B and D, E) from literature of the MESH model being used [2]. The examples were recreated (C and F) as 
part of this study to confirm that the version of the MESH model used was simulating scenarios as expected. The physical setup of the two 

scenarios are explained in panes A and D.  
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Data for this study was generated by modeling flow in a theoretical, rectangular channel using the 
MESH model. Channel dimensions, length and bottom width, as well as spatial and temporal 
discretizations were constant throughout all experiments. Variable parameters, consisting of channel 
slope (slope), Manning’s n (n), volumetric flow rate (Q), and downstream water depth (to control the 
amount of backwater), were systematically varied across a range of values for a set of experiments 
with the intent to capture a representative range of flow profiles. Only one variable parameter was 
altered per experiment, e.g. channel slope was varied for a set of experiments while n and Q remained 
constant. This approach provided a controlled means of altering channel and flow conditions with the 
ability to easily trace errors to the source. Values for variable parameters and constant parameters used 
in the experiments are shown in Tables 2 and 3.  

 
Table 2. Values for variable parameters used to run experimental scenarios through the MESH model. Downstream stage was set as a 
multiple of normal depth (ND). Default values of slope and 1/n are 5×10-4, and 33 respectively. Default steady flow is 100 m3/s and 

default unsteady flow is 500 m3/s. 

 
 

Table 3. Values for constant parameters used to run experimental scenarios through the MESH model. 

 
 

Experiments were designed for both steady and unsteady flow. Unsteady flow hydrographs were 
generated using a skewed gaussian distribution, changing only the peak flow between experiments. 
Time-steps of steady flow were added to the beginning of unsteady hydrographs to ensure sufficient 
model spin-up time prior to hydrograph initiation. Individual time-steps within unsteady flow 
experiments were treated as separate instances of a flow profile. Flow profile designations were 
assigned during post-processing by calculating Froude number and critical slope using MESH outputs 
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for each time-step. Due to time and data-processing constraints, adverse profiles were excluded from 
this study. 

4.2. Data Processing Module 

The simulation output from the MESH model as well as channel characteristics for experimental 
scenarios are fed, in parallel, into two post-processing modules. These two modules use discharge and 
cross-sectional area of flow generated from the MESH model and calculate the individual terms of 
the full momentum equation based on equation 2 and the DSPs (Table 1). 

In steady flow scenarios, only values at the last time step are used, whereas in unsteady flow scenarios, 
all time steps from the start to the end of the propagation of the unsteady flow along the channel are 
considered. The spin-up period at the start of the simulations and redundant steady state time steps 
after the passage of the discharge wave through the channel are removed from the analysis for 
unsteady flow cases. 

For all realizations (points in time and space) used in the analysis the following adjustments are applied 
to momentum terms: 

Steady Flow: 

● Condition SF-1: Due to rounding approximations, the inertia terms may assume very 
small values for steady state solutions. Therefore, these terms were forced to be equal 
to zero for all steady flow scenarios as part of the post processing module.  

● Condition SF-2: When the magnitude of the channel bed slope and friction slope (S0 
and Sf in equation. 2, respectively) are within 1% of each other, the flow is considered 
to be uniform and all terms of the momentum equation are forced to be equal to zero. 

Unsteady Flow: 

● Condition SF-2 is applied 

● Condition UF-1: When P.G. and Kinematic terms have different signs and their 
magnitudes are within 1% of each other, the inertia term is considered to be negligible 
and set to 0. 

The final product from the post-processing modules are saved as individual matrices for visual and 
statistical analysis. 

4.3. Visual Relation Module 

To identify if relationships between momentum terms and DSPs existed, the matrices outputted from 
the calculation modules were condensed into a single population and visualized. Visualizing the 
population was executed in two steps. The first depicted when the Kinematic Wave can be considered 
sufficient by highlighting when the P.G. and inertia terms both equal zero in a 3-dimensional space. 
The third dimension in this space is a DSP to visualize if transitions between the wave types 
corresponded to ranges of DSP values.  

The second approach depicted the transition between the Diffusive and Dynamic Waves. The P.G. 
and inertia terms of the Saint-Venant equation were normalized by the kinematic term which produced 
an equation with the sum of the two ratios equal to negative one. When the ratio of P.G. to kinematic 
equaled negative one, it was known that the inertia term was zero. The increasing significance of the 
inertia term was then captured as the ratio of P.G. to kinematic term moved in either direction away 
from negative one to positive or negative infinity. 
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4.4. Statistical Relation Module 

Several rounds of Principal Component Analysis (PCA) were performed on a 50% random sampling 
of the unsteady flow dataset. PCA re-projects data points onto axes that maximize variance within the 
data; correlating variables with axes that explain the greatest amount of variance can be used to 
interpret the relative significance of variables and inter-variable. PCA was performed on several 
combinations of DSPs and relative momentum terms (variables) to isolate relationships between DSPs 
and relative magnitudes of individual momentum terms, as well as to assess the relative influence of 
the inertia term. Relative momentum terms were calculated by normalizing the magnitude of each 
individual term by the sum of the absolute magnitudes of all three momentum equation terms. The 
first set of variables included all 7 DSPs and a relative inertia terms, the second set of variables included 
all 7 DSPs and a relative P.G., and the third set of variables included all 7 DSPs and all three relative 
momentum terms. Correlations between Principal Components (PCs) and variables were then used 
to identify DSPs that may offer similar information and relate variance of momentum terms to DSPs.   

5. Results 

5.1. Momentum Terms  

While the magnitudes of Kinematic and P.G. terms have similar distributions, the inertia term 
magnitudes are significantly lower. This highlights the fact that in most cases, the Dynamic Wave 
equation is not required to accurately explain the system. The distribution of momentum terms for 
steady and unsteady flow are shown in Figures 3 and 4, respectively.  

The influence of channel and flow characteristics on relative magnitude of the momentum terms is 
explored for each set of steady and unsteady flow simulations explained in Tables 2 and 3. Figure 5 
shows an example of the sensitivity of momentum terms to channel roughness for unsteady flow 
simulation without backwater effect at one time step. For all steady flow simulations, the values of the 
P.G. term are comparable with the kinematic term for the portion of the channel where backwater 
occurs. In these cases, the Kinematic Wave equation alone does not accurately explain the flow profile. 
The portion of the channel upstream of the backwater, however, has characteristics of uniform flow 
for which the Kinematic Wave equation is sufficient. The magnitude of kinematic and P.G. terms 
increase with increase in upstream discharge, larger backwater effects, higher values of Manning’s n 
(more surface roughness) and steeper slopes.  

For unsteady flow scenarios, the magnitude of the inertia term increases with increase in upstream 
discharge, steeper slopes, and decrease in Manning’s n. It should be noted that the MESH model does 
not produce accurate results for the inertia term around sharp curvatures in water surface due to the 
activation of the artificial diffusion term [4]. Overestimation of the relative importance of the inertia 
term around regions where the water surface slope changes (e.g. transferring from uniform to 
backwater) is an artifact of this inaccuracy. Overall, the values of the inertia term are remarkably lower 
than those of kinematic and P.G. terms. The ratio of the inertia to kinematic (or P.G.) rarely exceeds 
0.5 and is between 0-0.1 for majority of the realizations.  
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Figure 3. Distribution of momentum terms, steady flow.  

 
Figure 4. Distribution of momentum terms, unsteady flow.  



National Water Center Innovators Program Summer Institute Report 2018 

81 

 
Figure 5. A snapshot of the sensitivity of momentum terms to Manning’s n (surface roughness) for an unsteady flow scenario. Channel bed 

slope = 5×10-5, channel width = 100 m, normal depth is forced at the downstream boundary. 

5.2. Visual Analysis 

Examples of visualizations from the momentum term and DSP processing module are shown in 
Figures 6 and 7 with the Froude number. Figure 6 shows the inertia and P.G. terms plotted against 
the Froude number for a 1% random sampling of all the unsteady simulations in this study 
(computational constraints require the plotting sub setting). The momentum terms are normalized as 
the ratio of the absolute value of the term itself to the summation of the absolute values of each term. 
The Froude number is normalized by itself to range from 0 to 1. The figure shows that the percentage 
of points where both the inertia and P.G. terms are zero is ~22%. These points are representative of 
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a routing scenario where the Kinematic Wave would be considered sufficient. Additionally, for ~74% 
of the samples, the inertia term is less than 10% of the summation of the absolute values of the terms, 
while the P.G. term is nonzero. These can be representative of instances where the Diffusive Wave 
would be preferential over the Dynamic Wave, given a user designated acceptable error level. Both 
these support that the Dynamic and Diffusive Waves are not always necessary to achieve routing 
accuracy within a preset acceptable error range of the full momentum equation solution. 

 

 
Figure 6. A visualization of the inertia term, P.G. term, and a DSP (Froude number) in 3-dimensional space (purple points, top plot). The 3D points are 

projected onto 2D planes with blue points being the Froude number versus the P.G. term and red points being the Froude number versus the inertia term. 
Bottom plot is a 2D histogram of the inertia and P.G. 
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Figure 7 shows a plot of the ratio of the P.G. to kinematic term (PGtoK) and histograms of the 
Froude number when this PGtoK momentum term ratio is greater than, near, and less than negative 
one. The behavior of the PGtoK ratio with respect to negative one is analyzed because a ratio value 
of negative one is representative of the inertia term equaling zero. Figure 7 highlights this relation 
with the value of the PGtoK ratio to depict when the Dynamic Wave can be deemed unnecessary. It 
is also seen in Figure 7, that the DSP histograms when the PGtoK ratio is greater and less than -1 is 
different from the DSP histogram corresponding to when PGtoK equals -1. These histograms are 
proposed to represent threshold values of DSPs at the transition between Dynamic and Diffusive 
Wave. It is important to note that these results are sensitive to numerical errors in the MESH model 
for values near zero being exposed through division of terms and, thus adding numerical uncertainty 
to the histograms. 

 
Figure 7. A visualization of the decision between using Dynamic versus Diffusive/Kinematic waves. The bottom panels show histograms of 

a DSP, the Froude number, for different ranges of the ratio of the P.G. term to the kinematic term shown in the top panel. The ratio was 
calculated for a random sampling of 1% of the unsteady simulations and then ranked numerically. The histogram of DSP values 

corresponding to when the P.G. to kinematic ratio is near -1 (bottom center, blue bars) is presented to be compared to the histograms of DSP 
values when the P.G. to kinematic ratio is both greater (bottom right) and less than (bottom left) -1 respectively. 

 

5.3. Statistical Analysis 

5.3.1. PCA: DSPs and Relative Inertia Term 

DSPs 1,2, and 4 exhibited strong correlations with PC1 while DSPs 3 and 6 (Table 4) showed strong 
correlations with PC2 (r > 0.70), indicating that these sets of DSPs likely vary together. This result is 
reasonable considering that DSP1 and DSP2 are functions of velocity, and DSP4 is a function of 
DSP1. The relative inertia term showed a moderate correlation (r = ~0.50) with PC1 but a much 
stronger correlation (r = ~0.80) with PC4. All of the DSPs however, showed weak correlations (r < 
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0.30) with PC4. This may indicate that, while the DSPs 1,2, and 4 may be able to serve as a signal for 
when the relative magnitude of the inertia term becomes significant or insignificant enough to be 
included or ignored, some variance is left unexplained by the DSPs and their signal may fail in some 
scenarios.   

 
Table 4. Correlation values (r) between PC1-PC4 and All DSPs and the relative inertia term. PC5-PC8 all had correlations less than 

0.2 and were removed. Green, bold format denotes r ≥ 0.50. 

 
 

5.3.2. PCA: DSPs and Relative Pressure Term  

DSP 4 exhibited a strong correlation with PC1 (r = ~0.80), while the remaining DSPs showed 
moderate (0.49 < r < 0.69) to weak (r < 0. 49) correlations with PC1 (Table 5).  The relative pressure 
term exhibited similar behavior to the relative inertia term, showing a moderate correlation (r =~ 0.52) 
with PC1 and a strong correlation (r = ~0.87) with PC4. All DSPs showed weak correlations with 
PC4, again showing that the axis explaining the majority of the variance between DSPs may not explain 
the variance of the individual momentum terms. 
Table 5. Correlation values (r) between PC1-PC4 and All DSPs and the relative pressure term. PC5-PC8 all had correlations less than 

0.2 and were removed. Green, bold format denotes r ≥ 0.50. 

 
 

5.3.3. PCA: DSPs and Relative Momentum Equation Terms 

When all relative momentum terms were included in the PCA with the DSPs, relative kinematic and 
P.G. terms showed very strong correlations with PC1, while the relative inertia term exhibited a very 
weak correlation (r = 0.01, Table 6). Although no DSPs were strongly correlated with the PCs, DSPs 
1,2, and 4 showed the strongest correlations with PC1, with r values between 0.56–0.65. The relative 
inertia term, DSPs 3 and 6 showed moderate correlations with PC2 (r = 0.62—0.65). The majority of 
the variance was explained by PC1 and PC2, with which both the momentum equation terms and the 
DSPs showed at least moderate correlations. This shows potential for DSPs to be statistically related 
to the relative importance of the momentum terms, however, this may require regression analysis or 
non-linear statistical analysis to define the relationship. 
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Table 6. Correlation values (r) between PC1-PC4 and All DSPs and all relative momentum equation terms.  PC6-PC10 all had 
correlations less than 0.2 and were removed. Green, bold format denotes r ≥ 0.50. (Kine = Kinematic). 

 
 

6. Concluding Remarks 

6.1. Conclusion 

This work provides a framework for synthetic sample generation, visualization of individual terms of 
the full momentum equation and DSPs, and the statistical bridging of the two. Analysis of data 
confirmed that instances exist where the full Dynamic or Diffusive Wave routing methods do not 
significantly improve computational accuracy. While defining an acceptable level of error at which we 
may forgo Dynamic or Diffusive Wave for more simplified methods is beyond the scope of this study, 
using an arbitrary threshold of the Inertia term being less than or equal to 10% of the cumulative 
magnitude of the momentum terms results in only ~5% of the synthetic data required the full Dynamic 
Wave. With this arbitrary threshold, Diffusive and Kinematic Wave provide sufficient accuracy for 
the remaining scenarios. It should be noted that the sample generated in this study is not necessarily 
representative of the population, however, the framework developed can easily handle a larger, more 
representative sample in future work. 

As can be seen in the DSP histograms, differences in DSP magnitudes exist near and away from the 
transitions of the Diffusive and Dynamic Wave, specifically for the Courant and Froude number. It is 
proposed that these differences in DSP values near and away from the Dynamic/Diffusive transition 
can serve as a decision tool to determine a method in a heterogeneous routing scheme. 

PCA analysis revealed that redundancy may exist within the current set of DSPs. Continued research 
may benefit from elimination of redundant DSPs from the set. The moderate to strong correlations 
of several DSPs and the relative momentum terms to PC1 and PC2 show the potential for statistically 
relating this set of DSPs to the relative importance of individual momentum terms. However, 
inclusion of DSPs that represent different properties of flow may provide new information required 
to define a relationship to momentum terms that may serve as a transition signal in an operational 
setting. 

6.2. Aspirations for Future Work 

● The current set of simulations cover primarily M1 profiles. Future experiments should 
encompass all possible profiles and extreme scenarios.  

● Preliminary results from statistical analysis suggest that the current set of DSPs do not 
fully explain the variability of the momentum terms. Additional DSPs as well as statistical 
analysis should be considered for analysis of the data and relationships of this nature. 
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Abstract: A key element in hydraulic and hydrologic modeling is the specification of representative 
channel geometry. Without adequate geometry information, it is difficult to reliably simulate 
hydraulic properties such as bankfull discharge and stage at which flooding commences. The 
traditional solution to the geometry problem has been topographic and bathymetric surveying, and 
floodplains have become increasingly resolved with the advent of lidar. For continental-scale 
hydrology and hydraulics, however, the large amount of high-resolution data required, as well as the 
considerable computational effort needed to effectively incorporate such data, has led to simplifying 
assumptions such as rectangular or trapezoidal channels for long river reaches. The National Water 
Model (NWM) uses the simplified trapezoidal channel representation for 2.7 million river reaches, 
over which it forecasts water discharge for the entire continental United States. This has created 
uncertainties in when to initiate hydraulic predictions. The aim of this study is to: 1) evaluate the 
NWM predictions with the current trapezoidal channel representation and with real channel 
geometry (using HEC-RAS), and 2) suggest an improved representation of channel geometry while 
maintaining parsimony. As a preliminary analysis, the HEC-RAS model outputs of discharge and 
stage were compared with the USGS observed records for three cases: trapezoidal, real, and 
proposed generalized geometry representations. A brief analysis of NWM Muskingum-Cunge 
routing parameters for varied geometry cases was also undertaken. Statistical analyses show that 
more realistic channel geometry not only improves stage and flow predictions, but also improves 
simulated routing parameters, indicating the potential for geometric improvements to enhance the 
current NWM products. 

 

1. Motivation 

Accurate hydraulic and hydrologic modeling necessitates representative channel geometry. Without 
adequate geometry information, it is difficult to reliably simulate hydraulic properties such as bankfull 
discharge and stage at which flooding commences. The traditional small-scale solution to the geometry 
problem has been topographic and bathymetric surveying, and while floodplains have become 
increasingly resolved with the advent of lidar, channel bathymetry collection has lagged markedly 
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behind. Additionally, for continental-scale hydrology and hydraulics, the daunting amount of high-
resolution data required, as well as the massive computational effort needed to effectively incorporate 
such data when it is even available has precluded its use in current large-scale studies [1,2]. The 
combination of these factors has led to simplifying assumptions such as rectangular or trapezoidal 
channels for long river reaches when the focus of a model is hydrology-driven rather than hydraulics-
driven, e.g. [3,4]. 

The National Water Model (NWM) [5] uses the simplified trapezoidal channel representation for 2.7 
million river reaches, over which it forecasts water discharge for the entire continental United States 
(CONUS). The bankfull width and cross-sectional area of the trapezoidal channel is developed using 
regional curves that relate contributing drainage area to the bankfull characteristics [6]. Then, average 
depths and bottom widths are calculated using mathematical relationships keeping the cross-sectional 
area constant. The channel side slopes are currently assumed to be 1H:20V nationwide [5]. As a result 
of this simplistic representation of the channel geometry, the NWM does not generate a reliable stage 
product and also suffers from the assumption of “infinite” channel depth, which makes it impractical 
to represent overbank flow appropriately. Since the NWM-simulated stage “product” is used for 
Muskingum method flow routing, errors in simulated stage affect time-varying properties such as flow 
area and hydraulic radius, which are used to estimate Muskingum routing parameters K and X on-the-
fly. Clearly, flow routing could be adversely affected if the stage “product” is significantly affected by 
the simplistic channel representation. Therefore, it is of paramount importance to determine if the 
simplistic trapezoidal channel representation generates a reliable discharge and stage product in 
continental scale hydrological modeling and whether incorporating real channel geometry makes a 
significant improvement.  

To adequately represent real channels, it is vital to obtain high-resolution (<20m) data within and near 
channels at a relatively high temporal resolution due to dynamic changes during high-flow events, but 
this is currently an onerous task. In order to obtain various kinds of high-resolution datasets, as a 
supplement to professional field surveying, many agencies are turning to citizen scientists for data 
collection [7]. Considering the expansion of the application of citizen science to different sectors of 
research, we consider the potential for collecting and updating high-resolution channel geometry data 
by the help of citizen scientists using a relatively simple method.  

2. Objectives and Scope  

The overarching goal of this study is to assess the effects of incorporating real channel geometry into 
continental-scale hydrological models and propose a generalized cross-section which adequately 
captures important aspects for modeling. The specific objectives of the study are:  

● To simulate flow and stage using the Hydrologic Engineering Center’s River Analysis 
System (HEC-RAS) for both real and NWM channel geometry and compare the results 
with United States Geological Survey (USGS) observed gage data in different streams 
across the CONUS to evaluate the maximum expected potential for improvement. 

● To evaluate the potential improvements in flow routing and stage prediction made 
possible by the proposed generalized cross-section. 

● To determine potential methods for citizen scientists and others with little to no surveying 
experience to obtain a reasonably accurate cross-section representation using commonly 
available tools.  
 

3. Previous Studies 

Simplistic channel geometry assumptions are convenient when much of the data required to avoid 
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such assumptions is not readily available. An entire subfield of hydraulic geometry has arisen to aid in 
synthesizing geometry data when needed, which has largely focused on power-law relationships 
between streamflow and river mean depth, mean velocity, and width [8]. Some studies, chiefly [9], 
have lamented the focus on curve-fitting coefficients for these power-law relationships, arguing 
instead the importance of viewing hydraulic geometry as a dynamic equilibrium between erosive forces 
of moving water and resistive forces in the channel bed. Either approach requires large amounts of 
data which is currently expensive to produce, limiting their potential for use on a continental scale.  

Recent advances in remote sensing, particularly the advent of the Surface Water and Ocean 
Topography (SWOT) [10] mission, hold potential for building datasets of channel geometry data, 
especially river flow width. Methods have been explored to use SWOT radar altimetry products to 
estimate river bathymetry and slope [11], as well as discharge [12]. While these methods show 
substantial promise, the SWOT mission was understandably designed with larger-scale features in 
mind, i.e. river widths more than 50 meters [10]. Many smaller headwater streams would not be reliably 
detected, so while SWOT can aid in building knowledge in larger rivers, it may not be the most 
appropriate tool in low-order streams. Implementing citizen science methods for collecting channel 
geometry may be uniquely suited for building understanding of lower-order streams. 

Citizen science and community-based monitoring programs are increasing in number and breadth, 
generating volumes of scientific data. Specific to the field of hydrology, measurements such as stream 
stage are being increasingly collected by crowdsourcing. It is a viable tool for collecting distributed 
measurements of stream stage based on both the ease with which stream stage can be measured and 
the ubiquity of mobile phones. Citizen scientists can send hydrologic measurements via text message 
to a server that stores and displays the data on the web [7].  There are also different levels of 
engagement required for a citizen scientist to participate; generally, the more difficult or involved the 
task, the less likely it will attract enough interest to be a viable data source [7].  

The authors are currently exploring methods to obtain channel geometry that would require minimal 
effort on the part of a citizen scientist, such as sending a photograph of a river with a staff gage and 
markers from which width could be estimated, to build datasets of simultaneous river stage and width. 
For the topic of this report, however, a more-involved approach requiring wading of small streams is 
suggested in order to test the potential for citizen science channel geometry data of this kind. Other 
methods for developing the required data are also explored briefly. 

4. Methodology 

In order to evaluate potential improvements to simulations of stage and flow based on more realistic 
channel geometry, it is important to first establish a baseline against which to compare new methods. 
To accomplish this end, the stage and flow simulation results based on NWM geometry assumptions 
were considered. It was also necessary to develop a best-case scenario for the potential effects of better 
channel geometry representations by using the best-available high-resolution bathymetry and 
topography data and considering the stage and flow results produced. These two cases bound the 
region of potential improvements possible through modifying channel geometry representations 
alone. If significant differences in stage and discharge errors are not observed, this would indicate that 
efforts to improve hydrologic and hydraulic models may be better spent on other parameters such as 
channel roughness or bed slope. 

4.1. Model Selection 

Several features would comprise the ideal model for performing this kind of evaluation: the model 
code should be capable of resolving small-scale channel geometry data efficiently, it should be publicly 
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available, and it should be capable of resolving hydraulic structures such as culverts and bridges 
(particularly because the comparison gage data is largely available only at bridges). Due to the ubiquity 
of HEC-RAS models nationwide because of FEMA flood insurance studies and the public availability 
through the FEMA Engineering Library [13], the requirement for accurate geometric input data in 
HEC-RAS (thus ensuring geometric data is available at any given site), and HEC-RAS’s abilities to 
solve the full Saint Venant equations and resolve hydraulic structures, HEC-RAS was selected as the 
main modeling tool for this study. 

4.2. Site Selection 

For each study site, two items of data were required in this study: a HEC-RAS model (as a source of 
geometry), and at least one USGS gage internal to the reach in HEC-RAS with a period of record for 
stage and discharge sometime within the 25-year retrospective run of the NWM (1993-2017). To 
identify potential study sites, the USGS Gages II shapefile [14] and the US Cartographic County 
Boundary dataset [15] were used to identify counties with varying numbers of USGS gage sites as an 
initial filter. For this study, the FEMA Hydraulic Studies for counties of interest were requested and 
compiled into a database. The associated geometry files and cross-section data were imported into a 
GIS to evaluate overlap between cross-section data and USGS gage coverage. The sites selected for 
the study are presented in Table 1. 

Table 1. Selected HEC-RAS Study Sites 

Stream NWM Stream Order USGS Gage ID 

Contributing 
Drainage Area 
(USGS Gage, sq. 
mi.) 

Middle Fabius River 

(Lewis County, MO) 
4 05498150 141 

Hackensack River 

(Rockland County, NY) 
3 01376800 30.7 

Cartoogechaye Creek 

(Macon County, NC) 
4 03500240 57.1 

Little Tennessee River 

(Macon County, NC) 
4 03500000 140 

North Second Creek 

(Rowan County, NC) 
4 02120780 118 

Big Canoe Creek 

(St. Clair County, AL) 
5 02401390 141 

 

4.3. Boundary Conditions and Model Parameters 

As HEC-RAS models for FEMA flood insurance studies are typically completed using steady-state 
flow data, unsteady hydrographs had to be generated for each study site. For the vast majority of sites, 
only one USGS gage was available, meaning that if the USGS hydrograph data were to be used for 
independent comparison, it could not be used as forcing data also. Therefore, all hydrograph forcing 



National Water Center Innovators Program Summer Institute Report 2018 

91 

data came directly from the NWM 25-year retrospective run since it was the best-available data. The 
limitation of this approach is recognized, so all comparisons are prefaced with the NSE comparison 
between the NWM and the USGS gage site to denote areas where lack of improvements may have 
been the result of less-than-ideal forcing hydrographs. 

Lateral inflows from tributary streams were specified throughout reaches at the nearest downstream 
cross-section. A potential weakness of RAS arises when a cross-section dries out during low-flow 
periods, which can introduce instabilities [16]. In some cases, minimum flows were specified to avoid 
this issue. The models were then tested so that the smallest minimum flow possible was used purely 
to stabilize the model runs. For unsteady runs, some additional assumptions about hydraulic structure 
behavior were made due to the scope of the study: 

• Gate operations were not modeled due to lack of detailed information about operation 
rules. All gates were assumed as fully open during simulations.  

• When geometry cases were changed, some bridge piers were ignored as needed to allow 
the model to run successfully. This should have minimal effect for the NWM geometry 
cases due to the relatively high expected stages quickly overtopping bridges completely. 
Bridge piers were included in the existing surveyed geometry in RAS.  

 

4.4. Baseline and Realistic-Geometry Model Simulations 

Several different cases of Manning’s n values were run to avoid sensitivity to roughness values 
contaminating the results. The RAS model Manning’s n values (with potential to vary across any given 
cross-section, especially in the overbank regions) were considered as the “real” values, and the NWM 
Manning’s n cases (with a uniform Manning’s n across any given cross-section) were also tested. For 
each of the selected study sites, four different cases were simulated with varying combinations of 
hydraulic geometry and Manning’s n values: 

• Surveyed real geometry and “real” Manning’s n 
• Surveyed real geometry and NWM Manning’s n 
• NWM channel geometry and “real” Manning’s n 
• NWM channel geometry and NWM Manning’s n 

 
In order to compare these representations with the observed USGS data and evaluate their 
performance, several statistical analyses, including Nash-Sutcliffe Efficiency (NSE), percent bias 
(PBIAS), and Root Mean Squared Error (RMSE), were carried out for both the complete 3-year 
simulation and selected peak events. Peak stage magnitude comparisons were also completed for the 
selected peak events. In order to evaluate the quality of the NWM hydrograph forcing, NSE was 
calculated between the USGS observed data and the NWM retrospective run for that particular stream 
link. 

4.5. Proposed Cross-Section Representation 

Currently, NWM channel hydraulics include only bottom width and side slope as channel parameters 
[5]. Our proposal is to improve the channel geometry by replacing the 2-parameter definition with a 
7-parameter definition. This representation is shown in Figure 1, and the parameters are: the channel 
depths at 𝑏, 𝑐, and 𝑑 (ℎy, ℎT , and ℎz respectively) and the widths (𝑊|y, 𝑊yT , 𝑊Tz , and 𝑊zf) between 
each sequential pair of points. The parameters define the location of 5 distinct points, of which two 
are assumed as the banks. The five-point representation assumes level bank elevations, so the 7 
parameters are sufficient to represent an entire cross-section. Similar to the NWM geometry, the slope 
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extending left and right of the five-point representation is assumed to remain constant. However, 
unlike NWM geometry, this slope is not assumed as a constant 1H:20V, but it is instead based on the 
slope defined by the appropriate bank and the interior point closest to that bank (as an example, the 
slope to the left of the left bank at a is defined by the slope between points a and b). The 5-point 
generalization is adaptable to many scenarios, and it is capable of representing traditional assumptions 
such as rectangular and trapezoidal cross-sections with ease, ensuring backwards compatibility with 
existing NWM assumptions where better geometry data is not available. The main draw of this 
generalization is its adaptability to many representations, such as its ability to represent a natural cross-
section in a curving river where a cut bank and point bar are likely to form (similar to cross-section B 
from [9], reproduced in Figure 2). The proposed generalization even has potential for representing a 
cross-section with two well-defined channels, helpful in reaches where braided channels are currently 
an issue. 

 
Figure 1. Five-point generalized cross-section representation. 

 

 
Figure 2. Characteristic cross-sections adapted from Ferguson 1986, annotated with five-point representations (red points indicate level 

banks, orange points indicate channel points). 
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To test the viability of the proposed five-point generalization, additional geometry cases were 
evaluated for the Big Canoe Creek site in St. Clair County, Alabama: 

• 5-point generalized cross-section (including thalweg) and NWM Manning’s n 
• 5-point generalized cross-section (evenly-spaced points) and NWM Manning’s n 

 

Similar statistical comparisons were made for these additional two cases to evaluate potential 
improvements. The RAS Mapper tool in HEC-RAS was then used to visualize the differences in stage 
between: cases i) and iv) for both Hackensack River and Big Canoe Creek, cases iv) and v), and cases 
iv) and vi) for Big Canoe Creek. This was done by generating inundation extent maps using HEC-
RAS simulated stage and Digital Elevation Models (DEMs) of the area downloaded from USGS. 

4.6. Effects of Stage on Muskingum Routing Parameters 

One of the key expected outcomes from improved channel geometry representations is improved 
flow routing. As the NWM currently updates Muskingum routing parameters K and X throughout a 
simulation based largely on the simulated stage, it follows that better prediction of stage during 
simulations will lead to improved estimates of these routing parameters and thus better flow routing. 
For the Big Canoe Creek site, an analysis of the effects on K was undertaken since link travel time is 
currently a known issue in the NWM. In order to evaluate K, some parameters were required: an 
estimate of the wave celerity 𝑐} 	=

z~
z�

, the simulated flow 𝑄, and reach length 𝑑𝑥.  The reach length 
for the output cross-section was retrieved directly from the NHDPlus flowline network. The simulated 
flow was exported from HEC-RAS as a time-series. Within HEC-RAS, a plot of flow versus flow area 
was exported for a given cross-section and slope values were interpolated from this plot for given 
flow values to create a function for wave celerity. Due to small fluctuations in values, a cubic spline 
was fit to the data using the R package stats [17] prior to generating the wave celerity function. For 
the NWM geometry-NWM n and 5-point geometry-NWM n cases, the values of K were then 
calculated for each time step. While this method will not completely replicate the potential changes in 
K due to the use of the RAS-solver for the St. Venant equations instead of using actual Muskingum 
routing (and thus generating different flows at different times), it should provide some guidance as to 
general trends. Therefore, it is most appropriate to compare the two sets of routing parameter values 
at a given point for a given flow rather than inferring time-series trends. 

5. Results 

5.1. Summary Statistics and Improvements in Stage and Flow Simulation from Enhanced Channel Geometry 

Figure 3 (a) and (b) shows the hydrographs for flow and stage in Hackensack River, NY for NWM 
geometry and real geometry with NWM Manning’s n plotted against observed USGS data. 

In general, the simulated stage in HEC-RAS is substantially higher than observed, due to the steep-
sloped channel geometry representation. While flow also appears to be mainly over-predicted, this is 
due to the relatively poor hydrograph forcing from the NWM (NSE = -2.48, see Table 2). 
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(a)  

(b)  
Figure 3. (a) Stage and (b) flow hydrographs for Hackensack River, Rockland County, NY 

 
5.1.1. Stage Improvements 

Table 2 shows the NSE, stage PBIAS and stage RMSE for the four combinations of hydraulic 
geometry and Manning’s n values that were simulated for each site, including additional geometry 
cases simulated for the Big Canoe Creek site in St. Clair County, Alabama. When the hydrograph 
forcing from the NWM is compared with the USGS observed data, the majority of the sites have a 
negative NSE for flow, which indicates that the NWM flow predictions for those river reaches are not 
very accurate. Hence, it can be inferred that since the quality of the input hydrograph forcing of the 
HEC-RAS were poor, it could have affected the HEC-RAS output hydrographs. 
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Table 2. Summary of Time-Series Results 

 

The RMSE for stage shows improvements in all the sites for both the full time period and highest 
flow events with real channel geometry. Therefore, it is evident that incorporating real channel 
geometry has the potential to generate better predictions of stage in the NWM as well as other 
hydrologic models.   

     
NWM 

vs. 
USGS 

HEC-RAS (NWM forced) vs. USGS Stage Comparisons (sampled 
at USGS times) 

Site 

Type 
(Full 

Period, 
Highest 
Flow) 

Time Period 
Simulated 

Hydro-
graph 

forcing 
quality  

NWM 
geometry, 
NWM n 

NWM 
geometry, 
“real” n 

Real 
geometry, 
NWM n 

Real 
geometry, 
“real” n 

5-point 
generaliz

ation 
(with 

thalweg), 
NWM n 

5-point 
generaliz

ation 
(evenly 

spaced), 
NWM n 

Flow 
NSE 

PBI
AS 

(%) 

RM
SE 
(ft) 

PBI
AS 

(%) 

RM
SE 
(ft) 

PBI
AS 

(%) 

RM
SE 
(ft) 

PBI
AS 

(%) 

RM
SE 
(ft) 

PBI
AS 

(%) 

RM
SE 
(ft) 

PBI
AS 

(%) 

RM
SE 
(ft) 

Big Canoe 
Creek 

Full  12/03/2014-
12/31/2017 0.30 6.1 3.4 -0.06 2.8 -9.4 1.4 -11.2 1.4 0.5 1.5 27.7 1.6 

High 12/21/2015-
01/09/2016 -0.48 73.7 15.0 53.7 11.2 3.4 1.1 2.4 1.2 10.4 3.2 10.2 3.2 

Middle Fabius 
River  

Full 12/03/2014-
12/31/2017 -0.03 92.7 6.5 79.3 5.6 41.0 2.4 37.9 2.2 - - - - 

High 04/09/2015-
08/18/2015 0.46 105.1 14.8 84.9 12.4 20.6 3.2 17.4 3.1 - - - - 

Hackensack 
River  

Full 12/03/2014-
12/23/2017 -2.48 20.0 1.7 100.0 7.0 3.6 0.5 -3.5 0.4 - - - - 

High 02/23/2016-
03/05/2016 -3.84 2.6 4.4 14.0 14.8 0.3 1.1 -0.1 1.0 - - - - 

Cartoogecha-
ye Creek 

Full 12/03/2014-
12/23/2017 -0.79 58.5 1.5 38.0 1.2 31.0 0.6 9.0 0.5 - - - - 

High 12/24/2015-
12/28/2015 -5.11 0.32 7.4 0.23 2.8 -0.03 2.6 -0.1 2.7 - - - - 

Little Tenn-
essee River 

Full 12/03/2014- 
12/23/2017 0.38 109.0 2.9 103.8 2.9 98.5 2.1 95.3 2.0 - - - - 

High 12/23/2015-
12/28/2015 0.17 97.8 10.0 0.24 10.3 -0.05 2.1 -0.04 1.8 - - - - 

North Second 
Creek 

Full 12/3/2014- 
12/31/2017 -0.08 2.7 2.0 31.1 2.7 -50.2 1.5 -57.7 1.6 - - - - 

High 09/20/2015-
03/06/2016 0.46 9.4 3.3 40.8 4.6 -51.1 2.0 -54.7 2.1 - - - - 
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Table 3 shows the comparison of peak magnitudes of stage between the two different geometry 
configurations (both with NWM n) and the comparison of each configuration with USGS observed 
stage. The NWM geometry largely overpredicts the peak stage in all cases, whereas the real geometry 
fairly accurately predicts peak stage in three of the sites and slightly overpredicts in three sites. This 
further depicts that stage can be significantly improved by incorporating real channel geometry into 
the model.  

Table 3. Stage Statistics (Absolute Peak Difference and Percent Peak Difference) 

Site 

Difference between peak magnitudes of RAS stage and USGS 
observed stage 

NWM geometry, NWM n Real geometry, NWM n 

Difference (ft) % Difference Difference (ft) % Difference 

Big Canoe Creek 112.3 678 3.6 22 

Middle Fabius River 122.2 463 -0.6* -2 

Hackensack River 23.8 451 3.3 63 

Cartoogechaye Creek 26.3 218 4.5 37 

Little Tennessee River 33.8 277 0.0 0 

North Second Creek 54.1 369 -0.1* 0 

*Negative differences mean RAS simulation for that particular geometry case has underpredicted the stage 

 

5.1.2. Flow Routing Improvements with Better Estimates of On-The-Fly Muskingum Routing 
Parameters  

The Muskingum K parameters were calculated for each output time from the HEC-RAS model for 
Big Canoe Creek, and the results from the peak event are shown in Figure 5. From Figure 5, it is 
apparent that during the peak event, the NWM currently underestimates the reach travel time by a 
factor of approximately 1.75. For the full 3-year time series, the current NWM assumptions 
consistently underestimate the travel time through this reach by a factor of approximately 1.82. These 
are in line with unpublished speculation about the NWM currently rushing flow through reaches about 
twice as fast as expected, and this revelation implies that channel geometry is indeed worth pursuing 
due to the potential dramatic effects on flow routing if this trend holds across other study sites. The 
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brief spike in K values during the peak event appears to be an artifact of the smoothing process but 
will be investigated further in future work.  

 
Figure 5. Comparison of Muskingum routing parameters estimated on-the-fly 

 

5.2. Potential Improvements for Flood Inundation Mapping 

Figure 6 shows the inundation map for Hackensack River for both real and NWM geometry cases 
with NWM Manning’s n, further showing that NWM geometry largely overpredicts the stage when 
compared with real geometry. If the NWM predicted stage was used in inundation extent predictions, 
it can be seen that Palisades Center Mall in Rockland County, NY, would expect flooding in this event 
if NWM geometry is used, but with the use of HEC-RAS geometry, the Mall is not falsely warned.  

Another example of difference in inundation map using real geometry and NWM geometry is shown 
in Figure 7 for Big Canoe Creek, which is a fifth order stream. It shows that using NWM geometry 
HEC-RAS predicts larger area to be inundated than using real geometry. This opens up an important 
possibility: using more realistic channel geometry in the NWM may have the potential for generating 
a reliable stage product that can directly be used to generate flood inundation predictions rather than 
relying on stage generated using synthetic rating curves which introduces many uncertainties. 
However, further investigation is required. 
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Figure 6. Inundation Map of Hackensack River 

 

 
Figure 7. Inundation Map of Big Canoe Creek 
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5.3. Action Plan for Gathering New Data and Leveraging Existing Data 

If citizen scientists in the locality are involved in collecting real channel cross section data, they can 
take measurements of channel width and depth of the river using the relatively simple method 
suggested above. This will be a straightforward and easy task, that does not require much equipment 
or intensive training, as only a measuring tape to measure the channel widths and a ruler to measure 
depths will be sufficient. To supplement citizen science efforts, initiating county-level programs of 
professional field surveying in stream channels can provide a means for local government agencies to 
obtain more accurate flow and inundation forecasts for their own county. Another companion dataset 
of geometry data is existing channel cross section data in HEC-RAS models for locations where 
FEMA flood insurance studies have been performed, provided that this data can be parsed into an 
appropriate form. One of the products of this research is a Python script which is capable of parsing 
native HEC-RAS geometry files, and this code could possibly be adapted to this end.  

6. Conclusion 

This project was carried out to assess the importance of representing real channel geometry in 
continental scale hydrological modeling with the idea of improving the NWM predictions and 
proposing a simple method to engage citizen science to fulfill the data needs. This work demonstrates 
that representing actual channel geometry in large scale hydrological modeling can significantly 
improve model predictions over trapezoidal geometry assumptions, both in terms of stage prediction 
and Muskingum-Cunge routing parameter estimation. Future work can be directed toward studying 
the exact details of collecting citizen science channel geometry data and finding out the advantages 
and disadvantages of the methods suggested herein. 

The Summer Institute was a great opportunity for working in groups, networking, implementing 
existing skills and learning new ones. In our study, our work with HEC-RAS extended our exposure 
in hydraulic modeling. We have also gained good experience in working with geospatial data. Learning 
how to access and analyze real datasets from USGS has helped us to understand how to collect and 
work with field data. Overall, the experience was rewarding and very helpful for our futures in this 
field. 

 

Supplementary Materials: A Hydroshare repository of models and codes developed for this project 
will be created shortly. 

 

Disclaimer: This product uses the Federal Emergency Management Agency's API, but it is not 
endorsed by FEMA. 
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Abstract: The National Water Model (NWM) is a hydrologic model that simulates observed and 
forecast streamflow for approximately 2.7 million streams, based on an observational network of 
nearly 8,000 United States Geological Survey (USGS) stream gauges. This observational data network 
could be increased by integrating crowdsourced distributed hydrologic measurements on ungauged 
streams. Citizen Science (scientific work undertaken by members of the general public) engages the 
larger water community (at national, regional, and local scales), but comes with uncertainty. In order 
to investigate this uncertainty, a decision tree method was applied to evaluate existing citizen science 
data of stream stage base on the CrowdHydrology network. Quality control (QC) flags were developed 
for data measurements to pass from Level 1 (raw dataset), to Level 2 (flagged dataset), to Level 3 
processed dataset). QC flags were tested with synthetically generated crowdsourced stream stage 
measurements and unaltered USGS gage height. This methodology was than applied to 
CrowdHydrology sites and compared to co-located pressure transducer measurements. Error 
estimates were calculated to determine uncertainty in the in the citizen science data at these sites. Using 
this methodology, the NWM can incorporate crowdsourced data as independent verification and 
validation points to increase accuracy in forecast predictions. In addition, this research advances the 
Office of Water Prediction’s goal of supporting a water-resilient nation by involving the public in the 
collaborative research process; allowing for better informed water management decisions, promoting 
water resource awareness / education, and increasing public trust. 

 

1. Motivation 

Water resource is one of the basic ecosystem services for human activities, which need to be managed 
appropriately. Hydrological science forms the fundamental of water resources management decisions 
by assessing water-related risks and challenges like pollution, floods and drought [1]. The National 
Water Model (NWM), as a hydrologic model, is designed for water cycle simulations and streamflow 
forecasts over the entire continental United States (CONUS) [2]. Taking hydrologic physical processes 
into account, NWM provides high-resolution forecasts of soil moisture, surface runoff, snow water 
equivalent, and other parameters by leveraging the network of USGS stream gauges [3].  
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However, the scarcity of observational data in NWM always exists, both in spatial and temporal scales. 
For some streams especially those with small stream orders, the USGS gages are sparse (Figure 1), 
which can cause problems when considering the heterogeneous and complicated requirements for 
water management and governing processes [1]. The current lack of observations in lower order 
streams provides motivation for exploring alternative sources of data to support the NWM.  

 
Figure 1. Number of ungauged streams by stream order classification in the United States. 

Water runs in a network of streams spanning a length of at least 89 million kilometers worldwide [4]. 
The USGS has around 8,000 gauges in the United States that make up hydrologic monitoring 
networks. Even with this monitoring network, it is unrealistic to monitor all streams with in-stream 
sensors. Citizen Science “scientific work undertaken by members of the general public”, and 
crowdsourcing, “a form of citizen science, where data is provided by the crowd”, are practical methods 
to increase data collection. Increasing data observations increases the accuracy of stream forecast and 
expands our understanding of when, where, and how streams flow. Crowdsourcing can fill in 
information gap on intermittence steams and can vastly increase the number of monitored tributaries 
in a watershed. Crowdsourcing hydrologic data is also an easy means to promote public engagement 
and education about streams and watershed processes. This increases in public involvement in 
meaningful scientific work leads to collaborations among the public, scientist, and governmental 
which increases public trust [5]. 

2. Objectives and Scope  

The goal of this study is to develop a methodology to apply a quality control process to citizen science 
data in order to expand the observational network for the NWM into ungauged watersheds. Many 
crowdsourcing platforms are available, however, crowdsourcing as a means of collecting scientific data 
has yet to become wildly accepted [6]. Uncertainty and error in citizen science measurements are a 
primary concern for the scientific community [6]. Fienen and Lowry [7] found that high quality 
observations could be obtained without requiring trained observers, and stated that with a simple 
filter, errors such as transcriptions errors could be removed from the dataset. This research explores 
a decision tree method that allows citizen science data to move through a quality control process 
consisting of L1 (raw dataset) to L2 (flagged dataset) to L3 (processed dataset).  

Our study looked at CrowdHydrology (www.crowdhydrology.com) sites. The CrowdHydrology 
project consists of signs displayed next to water level gauge staff (a large ruler) that encourage people 
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passing by to send a text message recording the station number and stream level from the gauge staff 
[8]. Our study looked at five sites on the Boyne River, a 3rd order stream in Northern Michigan, with 
corresponding pressure transducer data. These sites were compared with the nearest USGS gage for 
stage data and nearest CoCoRaHS (www.cocorahs.org) site for precipitation data (Figure 2).  

 
Figure 2. Location of Michigan sites on Boyne River. 

The current NWM uses a network of approximately 8,000 USGS gages to forecast streamflow [3]. 
The USGS gaged sites are integrated into the model as verification / validation points in which the 
model is adjusted. The USGS gages monitor surface water in the United States. The distribution of 
gauges is biased towards the middle order streams (Figure 3), and for some states is disproportional 
to the surface water usage (Figure 4).  
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Figure 3. Distribution of USGS gages by stream order classification. 

 

Crowdsourced hydrologic data are being collected (Appendix 1) and could be used to fill in these data 
gaps on the smaller order streams. These additional data could allow for a more even distribution 
among the stream orders and help bridge the gap between water monitoring and water withdrawals. 
In addition, the NWM could use the crowdsourced data points as independent verification / validation 
points like with the USGS gage data to increase the accuracy of the streamflow forecast. The scope of 
this project consisted of using varies methods to explore citizen science data, develop a method for 
quality control in the citizen science data, and determine how uncertainty can be quantified in the 
quality control datasets.  

 

 
Figure 4. Percentage of total surface water withdrawals per day and percentage of total number of USGS gages by state (Alaska excluded). 

Data sources [9-11]. 

3. Previous Studies 

As an enhancement to traditional research, citizen science projects based on crowdsourcing have the 
potential to meet some of the challenges of limited data availability. Defined by National Oceanic and 
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Atmospheric Administration (NOAA), U.S. department of commerce, citizen science is “a form of 
open collaboration where members of the public participate in the scientific process to address real-
world problems in ways that include identifying research questions, collecting and analyzing data, 
interpreting results, making new discoveries, developing technologies and applications, and solving 
complex problems” [12,13]. Citizen science projects engage the community in scientific researches, 
which are designed for producing reliable data and information, creating new techniques, supporting 
natural resources management and raising public awareness of environmental concerns [14-16]. 
Citizen science is the base on which these large-scale or long-lasting environmental projects are 
conducted. Without work from these amateur volunteers, field data collection over a wide 
geographical region or a long period of time would be unachievable.  

By participating in these citizen science projects, citizen scientists have made key contributions in 
various fields including climate change, invasive species, biological diversity, ecological restoration, 
and water resource management [17,18]. The dataset of National Weather Service’s Cooperative 
Observer Program (NWS-COOP), generated by volunteer weather observers, collects basic weather 
data across whole US to document the climate changes since 1890 [19]. North American Breeding 
Bird Survey (BBS) is another project which reflects the contributions of citizen scientists. It was a 
roadside-based survey developed by bird counts from volunteer observers starting in 1966. As the 
primary source to describe population change and distribution patterns for North American 
songbirds, BBS reflects bird group dynamics and conservation situations among different species 
[19,20]. The revolution of mobile phones and Internet in recent years provides citizen volunteers with 
easier and higher efficient approaches to collect, store and communicate a large amount of data [21]. 
These developments enlarge the capabilities of citizen science, driving its usage growth in new fields 
with innovative methods [22-24].  

These technological advances have also encouraged the worldwide increasing engagements of citizen 
science data in hydrological researches with a wide range including stream flow estimation, floods 
prediction, hydrological database generation, and water quality monitoring [8,25,26] (Appendix 1). The 
confidence of data collected by citizen scientists has been evaluated in different scales [27-29]. Le 
Boursicaud et al. [30] gauged the flow velocities and hydraulic processes of extreme floods based on 
the YouTube home movie, which can be used for post-event determination of stream discharges. 
Using the same data sources, Michelson et al. [31] monitored water level changes in a Saudi Arabia 
cave. Turner et al. [32] tracked the annual reaches variation of perennial surface flow by wet/dry 
mapping. In this process, volunteers were trained to collect the coordinates of flow end points. There 
are also various citizen science projects related to hydrology launched by governments such as 
Volunteer Water Monitoring Programs (USA), the Risk-Scape Project (New Zealand), Water-Watch 
Victoria monitoring network (Australia), which not only vastly increase the number and type of 
available hydrologic data with low-cost, but also promote public understanding and participation 
about hydrological processes [33].  

4. Methodology 

To evaluate uncertainty in citizen science-based stream stage data in time series and flag erroneous 
observations, a decision tree was developed and applied in an EXCEL platform. Multisource datasets 
were utilized in these processes to determine the ruleset of decision tree. The classification ability of 
the decision tree was evaluated based on a set of CrowdHydrology stage data of Boyne River, 
Michigan. 

4.1. Data Sources 

To flag the citizen science data, which has high risk of error, the reference datasets are required. As 
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the data quality can be influenced by lots of factors like sampling scale, frequency, location, etc. 
multiple sources of reference data were utilized to reduce the consequences caused by different data 
collection methods in this study. The data sources and locations used are listed in Table 1. 

 
Table 1. Data source and location for each station. 

Data source Station ID Latitude  Longitude 

CrowdHydrology MI1022 45.214508 -85.011725 

CrowdHydrology MI1023 45.203904 -84.972731 

CrowdHydrology MI1024 45.196873 -84.958077 

CrowdHydrology MI1025 45.157571 -84.921393 

CrowdHydrology MI1026 45.1714449 -84.876804 

CrowdHydrology OR1000 44.576106 -123.32638 

CocoRaHS  MI-CX-7  45.18639 -85.1475 

USGS TX 08211503 27.8969652 -97.625551 

USGS OR 14171000 44.525 -123.334 

USGS MI 04127800 45.10250676 -85.098112 

 

4.1.1. Crowd-Hydrology Dataset 

The citizen science CrowdHydrology datasets were obtained for stations MI 1022-1026 and OR 1000 
from www.crowdhydrology.com/data. These datasets span from May 2014 to June 2018 and were 
used for testing and obtaining the decision tree metrics. The number of measurements used for each 
station is listed in Table 2. Measurement duration is sporadic with less observations during the winter 
months (Figure 5).  

 
Figure 5. Michigan Boyne River CrowdHydrology measurements with CoCoRaHS rainfall. 
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Table 2. Number of measurements for each CrowdHydrology site used. 

Station ID 
Number of total 

 measurements 

Number of 
measurements  

corresponding to 
pressure transducers 

MI1022 169 15 

MI1023 211 20 

MI1024 150 7 

MI1025 93 23 

MI1026 40 15 

OR1000 1262 N/A 

 

4.1.2. USGS Dataset 

The USGS datasets were obtained from https://waterdata.usgs.gov/nwis. USGS is one of the most 
widely used reference data source, provides long-term stage monitoring data across whole country. 
TX USGS Gage No. 08211503 was used with added random noise, as simulation of citizen science 
data. It was compared to the original dataset, as corresponding truth values, and used for control 
selection. MI USGS Gage No. 04127800 was used in decision tree with the MI citizen science datasets 
for flagging the unusual data. The number of measurements used and date range for each gauge is 
listed in Table 3. Measurement duration is every 15 minutes.  

 
Table 3. Number of measurements and date range for each USGS gage station used.  

USGS 
Gage No.  

Number of 
measurements Discharge date range Gage height date 

range 

08211503 139,882 1/01/2014 to 12/31/2017 
1/01/2014 to 
12/31/2017 

14171000 148,386 4/01/2014 to 7/02/2018 
3/04/2018 to 
7/02/2018 

04127800 138,421 4/11/2014 to 7/02/2018 
3/04/2018 to 
7/02/2018 

 

Stream discharge measurements made over the range in stage of the stream are plotted against the 
corresponding stages to define the stage-discharge relation that is used in conjunction with the 
recorded stage record to determine the discharges throughout the year [34]. The stage was back-
calculated and values predicted for the MI and OR USGS gages by creating a rating curve from the 
2018 gauge height and discharge data [34,35]. The rating curve was made by inserting a linear 
regression line with the equation in the form Y = a + bX, where X is the explanatory variable 
(discharge) and Y is the dependent variable (gauge height). Root mean square error (RMSE) was used 
to indicate the absolute fit of the model to the data–how close the observed data points are to the 
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model’s predicted values [36]. RMSE values where calculated, the accuracy of the prediction 
considered acceptable, and the equations in Table 4 used to predict stage height. 

 
Table 4. Back-calculations for stage height for USGS gages. 

Gage # Flow Rating Curve Equations R2 RMSE  

04127800 y = 0.0059x+1.9865 0.9622 0.0578 

14171000 y = 0.0078x+26006 0.9977 0.4731 

 

4.1.3. Pressure Transducer Dataset 

Pressure transducers (PT) were installed and corresponded with the CrowdHydrology (CH) MI data 
points on the Boyne River. These data obtained from the pressure transducers was used for qualifying 
uncertainty in the citizen science data and evaluating the classification capabilities of decision tree by 
combined with CH data. The number of measurements used and date range for each PT are listed in 
Table 5. 

Table 5. Number of measurements and date range for pressure transducer on the Boyne River. 

Station 
ID Number of measurements Date range Measurement 

duration 

PT1022 40,000 6/07/2017 to 
7/05/2018 1 min 

PT1023 4,622 5/17/2018 to 
7/04/2018 15 mins 

PT1024 4,630 5/17/2018 to 
7/04/2018 15 mins 

PT1025 20,794 7/27/2017 to 
7/12/2018 15 mins / 5 mins 

PT1026 25,546 9/13/2017 to 
7/11/2018 15 mins 

 

4.1.4. Additional Datasets 

Except the biases from data collection, recording and processing, the singular data can also be 
described by some external factors. Additional datasets were used for setting controls to determine if 
they can be used as potential reference to flag wired data. 

1) Precipitation data 

Precipitation is one of possible factors which may impact the stream stage. To make up the gaps in 
dataset, two sources of precipitation data were selected. The first is from National Climatic Data 
Center (NCDC), NOAA. The second is CoCoRaHS dataset, a national citizen science-based 
precipitation observation network. These datasets report cumulative daily precipitation in inches from 
April 1, 2014 to June 29, 2018. For NCDC dataset, the record was chosen from the gauge which is 
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nearest to Citizen Science data gauge to solve the disagreement between two data collection system. 
For CoCoRaHS data, the precipitation is recorded as county scale (Figure 2). 

2) Temperature data 

Temperature may have potential influence not only on stage itself but also volunteers’ activities, which 
are close related with sampling frequency of citizen science data. The daily average temperature data 
was collected from NCDC-NOAA. As the precipitation data, the observation station with closest 
distance from citizen science gauge was select to obtain temperature records. The unit of temperature 
dataset is Fahrenheit. 

4.2. Decision Tree 

Decision tree methods, also called recursive partitioning, were developed to segment the target dataset 
into subdivisions based on the predefined controls for each branch [37,38]. As one of the most 
commonly used prediction models, decision tree has incomparable advantages for binary classification 
by facilitating user’s comprehension and simplifying the classification processes [39]. The typical 
framework of a simple decision tree includes one input dataset, several test rules and a set of categories, 
which correspond to the root, branches and leaf nodes. To ensure the on-way data flow and avoid 
loops in the decision tree, a node is only allowed to have one parent node. Based on this structure, the 
input dataset can be subdivided sequentially according to the controls and fall into a certain class in 
the end [38]. 

The controls in a decision tree define the classification rules. By breaking a complex decision into a 
set of sequentially independent controls, decision trees implement data categorization in a multistage 
approach [40]. Every obtained case should satisfy the ruleset which is composed of controls along the 
path from the root to the corresponding leaf. For the same task, different control combinations may 
lead to different conclusion and accuracy [41]. 

4.2.1. Control Design 

For the stream stage, two types of data, which have high possibility to be sources of uncertainty in 
citizen science dataset, were flagged. One is the incorrect data, which should be kicked out before data 
analysis; the other type are data with unusual values, to which close attention should be paid. To set 
the classification rules for decision tree, a simulated citizen science dataset of TX was applied to assess 
the capability quantitatively for each control. Some records were selected randomly and deleted to 
simulate irregular sampling frequency. Among the remained 104,030 stage records, there were 528 
points whose values were modified as random noise. Except these data with noise, original dataset 
contains 44 zero records, which also should be flagged. Seven controls are designed to be test in this 
study, including: 

1) Positive 

The stage value cannot be negative. The zero stage values, as an extreme situation, also should be 
given great emphasis. Thus, if a stage record is not positive, it was flagged. 

2) Local stability 

The sharp changes on local scale in time series data always imply the potential issues. To pick these 
data points, the data bias from average stage was measured by standard deviation. Moving windows 
with four sizes (3-day, 5-day, 7-day and 14-day), which reflect the variation in different time scales and 
decrease the rate of mis-classification, were used to calculate local average 𝐴𝑣𝑒𝑟K and standard 
deviation 𝑆K (𝑖 = 3,5,7,14). If the distance between a data and  𝐴𝑣𝑒𝑟K is larger than triple 𝑆K , a flag 
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should be assigned to it. 

3) Sampling frequency 

Sampling interval may produce the gap in time series data, which may reduce the reliability of dataset. 
In this study, we assume that the threshold is 3-day. 

4) Comparison with reference dataset 

Reference data source can be diverse and include reports on governmental website or field 
measurements. We selected USGS gage data as reference to test if the trend of citizen science data is 
consistent. Several steps were used to assess agreement:  

1. Calculate absolute difference 𝑑𝑖𝑓 between citizen science data and reference USGS data; 

2. Draw out the paired data from citizen science dataset whose slope 𝑘�� has different tendency 
with corresponding 𝑘����, and tab them ‘temporary flag’; 

3. Calculate average 𝑑𝑖𝑓and standard deviation 𝑆 for temporary flagged group, if �𝑑𝑖𝑓 − 𝑑𝑖𝑓� >
𝑆f�|H, flag it, the unflagged data was put back to the citizen science dataset; 

4. Calculate average 𝑑𝑖𝑓and standard deviation 𝑆 for the rest of citizen science dataset, if 

�𝑑𝑖𝑓 − 𝑑𝑖𝑓� > 𝑆, flag it. 

5) Sampling time 

As a manually acquired data source, quality of citizen science data may be related with sight-affected 
factors like darkness. We assumed that during the early morning (0:00-3:59) and late night (21:00-
23:59) the probability of recoding wrong value is higher than other time.  

6) Precipitation 

As a major source of fresh water, precipitation may complement the stream. We assumed that the 
changes of stage should correspond with precipitation. The rate of precipitation (Table 6) has been 
classified by American Meteorological Society (AMS) to reflect the rainfall intensity, which were 
chosen to determine the rank of precipitation and stage slopes [42]. We assume the stage data should 
be flagged if the rank of its slope does not agree with corresponding precipitation slope. 

 Table 6. Precipitation categories 

Precipitation categories Rate(mm/h) Rank 

Drizzle 

A trace <0.10 1 

Light 0.10-0.25 2 

Moderate 0.25-0.50 3 

Heavy 0.50-1.00 4 

Rain 

Light 1.00-2.50 5 

Moderate 2.50-7.60 6 

Heavy >7.60 7 
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7) Temperature 

We assume that the extreme temperature may be in relation to sampling frequency due to its impact 
on the human activities. Here the range of 15 to 25 Celsius was selected as a comfortable temperature 
for citizen scientists [43]. Data with corresponding temperature out of this range were flagged. 

The flag assignment rules are shown in Table 7. For each control, the results involve two class ‘Flag’ 
and ‘Unflag’, which correspond to Flag 1 and Flag 0. 

 
Table 7. The flag assignment Rules for each control 

Control Flag Assignment Rules 

1 Positive 
𝑆𝑡𝑎𝑔𝑒 > 0 0 

𝑆𝑡𝑎𝑔𝑒 ≤ 0 1 

2 Local Stability 

|𝐶𝑖𝑡𝑖𝑧𝑒𝑛	𝑆𝑐𝑖𝑒𝑛𝑐𝑒	𝑑𝑎𝑡𝑎 − 𝐴𝑣𝑒𝑟K| ≤ 3 ∗ 𝑆K			𝑖 = 3,5,7,14 0 

At least one of  

|𝐶𝑖𝑡𝑖𝑧𝑒𝑛	𝑆𝑐𝑖𝑒𝑛𝑐𝑒	𝑑𝑎𝑡𝑎 − 𝐴𝑣𝑒𝑟K| > 3 ∗ 𝑆K			𝑖 = 3,5,7,14 
1 

3 Sampling Frequency 
≤ 3	𝑑𝑎𝑦𝑠 0 

> 3	𝑑𝑎𝑦𝑠 1 

4  Reference 
Comparison 

𝑘�� × 𝑘���� �𝑑𝑖𝑓 − 𝑑𝑖𝑓�  

< 0 
Temporary 

Flag 

> 𝑆f�|H 

1 

= 0 

Only one 
slope 

equals to 0 ≤ 𝑆f�|H 

Temporary 
Unflag 

> 𝑆 
Both slopes 
are equal to 

0  
≤ 𝑆 0 

> 0 

5 Sampling Time 
21: 00 − 3: 59(+1	𝑑𝑎𝑦) 0 

4: 00 − 20: 59 1 

6 Precipitation 
𝑅𝑎𝑛𝑘-S+TK-K%|%K#. = 𝑅𝑎𝑛𝑘�K%K/+.	VTK+.T+	z|%+ 0 

𝑅𝑎𝑛𝑘-S+TK-K%|%K#. ≠ 𝑅𝑎𝑛𝑘�K%K/+.	VTK+.T+	z|%+ 1 

7 Temperature 
15°𝐶 − 25°𝐶 0 

< 15°𝐶	𝑜𝑟 > 25°𝐶 1 

 

4.2.2 Ruleset Generation 

Ruleset is composed of ranked controls with good capability to categorize data points into appropriate 
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classes. Every control was tested individually. To reflect the classification’s results, we utilized a 
confusion matrix. Four performance indicators were considered to quantitatively estimate the 
classification accuracy of each control. Assume a binary confusion matrix as Figure 6, we computed 
Precision 𝑃, Recall 𝑟, F1-score 𝐹L, and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [44,45]. 

 
Figure 6. Binary confusion matrix 

For this study, the precision describes the proportion of the data points flagged by controls that should 
be flagged according to the ruleset. The recall expresses the ability of controls to find flag-data in the 
dataset. The equations of precision and recall are: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃																																																																					(1) 

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																																																					(2) 

Taking the harmonic average of precision and recall leads to the F1-score, which gives equal weight 
to both measures and avoid the punishment of extreme values. The F1-score can be calculated using: 

𝐹L = 2 ×
𝑃 × 𝑟
𝑃 + 𝑟																																																																			(3) 

The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 reflects the overall accuracy of classification and is computed by:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁																																																				(4) 

 

In this study, FN represents these data points which are misclassified into unflag class. To reduce the 
FN rate, controls selected to form the rules combination tend to have complementary abilities. 
Dividing FN into non-positive data and positive data with bias would be helpful to figure out the 
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different ability of controls and determine their operation orders. The performance of selected 
controls combination was also assessed by confusion matrix and performance indicators as individual 
controls. 

4.2.3. Prediction Accuracy Estimation for Decision Tree 

For accuracy evaluation, Crowd-Hydrology data from five stations on Boyne River, MI, were applied 
to obtained decision tree as input dataset. To test the flexibility of the decision tree, USGS data from 
the nearest gauge and pressure transducer data from the same five stations were both used as 
references. The accuracy of prediction was assessed qualitatively and quantitatively. Using this 
methodology, the question if the decision tree can improve citizen science data quality to meet the 
requirement of NWM can be answered. 

Error and uncertainty were calculated among the raw (L1), flagged (L2), and processed (L3) datasets. 
The root-mean-square error (RMSE) is a measure of accuracy between the values from an estimator 
(citizen science data) and the values observed (pressure transducer data) or considered true. 

𝑅𝑀𝑆𝐸 = �∑ (𝑦�K − 𝑦K)].
K�L

𝑛 																																																										(5) 

Percent error is used when comparing an experimental result E with a theoretical value T that is 
accepted as the "correct" value [46].  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑒𝑟𝑟𝑜𝑟 =
|	𝑇	 − 	𝐸	|

𝑇 ∗ 100%																																																	(6) 

Fractional or relative uncertainty is used to quantitatively express the precision of a measurement [46].  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =
𝑒𝑟𝑟𝑜𝑟
𝐸 ∗ 100%																																													(7) 

Percent difference is used when comparing two experimental results E1 and E2 that were obtained 
using two different methods [46].  

𝑃𝑒𝑟𝑐𝑒𝑛𝑡	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =

|	𝐸L 	−	𝐸]	|
𝐸L + 𝐸]

2 ∗ 100%																																									(8) 

5. Results 

The results section presents the obtained decision tree and its reliability. Based on this decision tree, 
the improvements of citizen science dataset are evaluated quantitatively.  

5.1. Control Selection 

Confusion matrix allows visualization of the performance for each control. Based on the USGS TX 
data with added noise, the classification confusion matrix is shown in Table 8. Classification 
performance was estimated by four indicators and the results are shown in Table 9, which provides 
the quantitative comparison between different controls.  
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Table 8. Classification confusion matrix for simulated citizen science data 

Control 

 Prediction Class 

Actual Class Flag Unflag 

1 Positive 
Flag 403 169 

Unflag 0 103458 

2 Local Stability 
Flag 96 476 

Unflag 725 103209 

3 Sampling 
Frequency 

Flag 0 572 

Unflag 1 103457 

4 Reference 
Comparison 

Flag 94 478 

Unflag 0 103458 

5 Sampling Time 
Flag 160 412 

Unflag 30192 73266 

6 Precipitation 
Flag 209 363 

Unflag 50543 52915 

7 Temperature 
Flag 334 238 

Unflag 60603 42855 

 
Table 9. Classification performance estimation 

Control Precision Recall F1-score Accuracy 

1 Positive 1 0.7045 0.8267 0.9984 

2 Local stability 0.1169 0.1678 0.1378 0.9885 

3 Sampling frequency 0 0 NA 0.9945 

4 Reference Comparison 1 0.1643 0.2823 0.9954 

5 Sampling time 0.0053 0.2797 0.0103 0.7058 

6 Precipitation 0.0041 0.3654 0.0081 0.5107 

7 Temperature 0.0055 0.5839 0.0109 0.4152 

 

Control orders relate with the efficiency and result of decision tree. In this study, FN represents the 
data points which are misclassified into unflag class. To reduce the FN rate and improve the flagging 
accuracy, controls selected to form the rules combination tend to have complementary abilities. 
Dividing FN data points into non-positive data and positive data with bias. Table 10 is used to reflect 
the mis-sort types in FN for each control. 
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Table 10. Flag-class data misclassified into unflag class 

Control 

Misclassified flag-class data 

Total 
Type 

Negative or 0 Bias 

1 Positive 169 0 0% 169 100% 

2 Local stability 476 353 74.16% 123 25.84% 

3 Sampling frequency 572 403 70.45% 169 29.55% 

4 Reference Comparison 478 373 78.03% 105 21.97% 

5 Sampling time 412 308 74.76% 104 25.24% 

6 precipitation 363 228 62.81% 135 37.19% 

7 Temperature 238 144 60.50% 94 39.50% 

 

To establish optimal ruleset, controls with good and complementary classification abilities were 
chosen. According to Table 8 and Table 9, as the worst performance on identifying flag type data, 
Control 3 (Sampling frequency) should be removed. Taking F1-score and Accuracy into account 
simultaneously, Control 1 (Positive), Control 4 (Reference Comparison) and Control 2 (Local stability) 
have high potential for flag abnormal value. Based on the result of Table 10, among these three 
controls, control 1 has preeminent capability to locate non-positive values but doesn’t work with data 
containing biases. On the contrary, control 4 and 2 have low misclassification rate for biased data and 
high error rate on non-positive type data. Thus, the combination including control 1, 2, 4 could be 
potential to provide substantial information without large duplication and lead to satisfactory results 
of categorizing data into flag and unflag classes. The structure decision tree is show in Figure 7. 
Appling this decision tree to the TX data with added noise, the results was recorded as Table 11, 
which presents a great performance. 

 
Table 11. Classification result of Decision tree 

Confusion Matrix 

 Prediction class  

Actual class  Flag Unflag 

Flag 572 0 

Unflag 726 102732 

Classification Performance Estimation 

Precision Recall F1-score Accuracy 

0.4407 1 0.6118 0.9930 
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Figure 7. Decision tree structure 

 

Although the general performance of the decision tree is satisfactory, there are misclassifications 
mainly concentrating on extreme values due to natural fluctuation of stream stage (Figure 8). Potential 
methods to reduce this type of error is to change thresholds (multiple of standard deviation in rule 2 
and rule 3) which are used to measure the value bias. As the threshold is determined empirically, it 
may not be the appropriate one for the specific dataset. Exploring more thresholds can be helpful to 
find a superior metric.  

 
Figure 8. Example of natural extreme value in time series stage data 

 

5.2. Application of Decision Tree Methodology 

The simulated citizen science dataset consisted of 104,029 data points in the L1 (raw) dataset; 88,099 
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points flagged by the decision tree methodology in the L2 dataset; and 15,930 data points in the L3 
(processed) dataset. The original USGS TX data consisted of 104,030 stage records. Figure 9 shows 
the simulated dataset with added noise. The decision tree methodology was successfully at flagging 
potentially erroneous data points that were removed with processing in L3 dataset (Figure 9)   

 
Figure 9. L1 (raw) simulated citizen science dataset with original USGS TX gage dataset (top). L3 (processed) simulated citizen science 

dataset with original gage dataset (bottom).  

 

The number of data points in each dataset (L1-L3) are listed in Table 12 and were used to create the 
hydrographs plots in Figure 10. The L1 (raw) dataset with the points flagged (from L2) by the decision 
tree are on the left side, and the L3 (processed) dataset with the flagged data points removed for each 
MI station are on the right side (Fig. 10). The number of data points flagged by the decision tree (a, c, 
e, g, i) created more noise in the hydrographs. Removing these data points (b, d, f, h, j) created gaps 
in the plots. To fix these gaps, other data sources are needed to correct flagged data points to adjust 
them to the pressure transducer’s data. The decision tree was able to flag potential problem data 
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points, however, more research is needed examine the L2 dataset to correct points to move to the L3 
dataset.  

 
Figure 10. L1 raw dataset with flagged points (right) and L3 dataset with the L2 points removed (left). Orange line is pressure transducer 

dataset, blue line is CrowdHydrology dataset.  

Table 42. Number of data points in each dataset.  

Station ID  L1 L2 L3 

MI1022  15 4 11 

MI1023  20 5 15 

MI1024  7 3 4 

MI1025  23 14 11 

MI1026  13 2 11 
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5.3. Prediction Accuracy of Decision Tree 

Error estimates between the CrowdHydrology (CH) datasets and the pressure transducer (PT) datasets 
are shown in Table 13(a,b) were calculated from the number of data points in the datasets in Table 
12. The smallest error estimates for the L1 and L3 datasets are in blue. RMSE was deceased by 
removing data points for all sites expect MI1024. Removing data points increased all error estimates 
for MI1024. The increase in error estimates for MI1024 is most likely because there were only 7 data 
points that corresponded with the pressure transducer (Table 12). Percent error decreased except for 
MI1022 and MI1024. Percent uncertainty increased at all sites. Percent difference was decreased at 
sites MI1023 and MI1026.  

 

The random error in experimental results is due to lack of observer precision, resulting in a spread of 
results (Figure 11). Due to the random nature of these errors, there is an equal chance that they will 
be above or below the ‘true’ value or measured mean value [47]. As in Figure 11, error is estimated in 
a range for the datasets, ± instead of %, we divide the table % values by 100 and result in ± meters 
(Table 13b). This makes the error, uncertainty, and difference values less than the RMSE value and 
puts them in level with the USGS staff gauge [48,8]. 

 
Figure 11. Error and uncertainty estimates [47]. 

 

5.4. Signal Analysis 

The CrowdHydrology (CH) and pressure transducer (PT) had different time frames, therefore, only 
a subset of the CH datasets could be compared one-to-one with the PT datasets. (The CH date 
range was from 2014 to 2018, and the date range for the PT data was from 2017 to 2018). The 
decision tree methodology used the nearest USGS gage to the CH dataset as a flagging criteria. Since 
the CH and PT datasets are on an ungauged stream a USGS station from a neighboring watershed 
was used. The USGS gage showed similar trend in the signals for stream stage (Fig. 12), however, 
was on a different scale from that of the CH datasets and the PT datasets. A signal analysis was used 
to evaluate patterns between the USGS gage, the CH, and PT data (Fig. 13). SAS Wavelet Analysis 
produced the scalograms from the daily mean stage height for the CH, PT, and USGS datasets. 
Wavelet scalograms communicate the time frequency localization property of the discrete wavelet 
transform performed by SAS 9.4 [49]. The images produced are shown in Figure 13. The location 
and size of the rectangle are related to the time interval and the frequency range for this coefficient; 
low levels are plotted as wide and short indicating a wide time interval but a narrow range of 
frequencies in these data, high levels are plotted thin and tall indicating small time ranges but large   
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Table 13a. Error calculations for Michigan CrowdHydrology and pressure transducers datasets. 

Site Dataset RMSE 
(m) % Error % Uncertainty % Difference 

MI1022 

L1 0.0230 0.2820 0.0111 0.0706 

L2 0.0232 0.2741 0.0353 0.0686 

L3 0.0227 0.2865 0.0371 0.0717 

MI1023 

L1 0.0383 0.4776 0.0186 0.1197 

L2 0.0388 0.4678 0.0597 0.1173 

L3 0.0381 0.4698 0.0601 0.1177 

MI1024 

L1 0.0095 0.1063 0.0044 0.0266 

L2 0.0085 0.0696 0.0094 0.0174 

L3 0.0102 0.1339 0.0180 0.0335 

MI1025 

L1 0.0892 1.6125 0.0648 0.1642 

L2 0.1071 0.9728 0.1286 0.2473 

L3 0.0582 0.7095 0.0911 0.1781 

MI1026 

L1 0.1219 0.6565 0.0207 0.1661 

L2 0.3042 3.1098 0.3287 0.7898 

L3 0.0273 0.2105 0.0223 0.0527 
 

Table 13b. Error estimates based on range ± meters for the CH and PT datasets. 

Site Dataset Error (m) Uncertainty (m) Difference (m) 

MI1022 
L1 0.00282 0.00011 0.00071 

L3 0.00287 0.00037 0.00072 

MI1023 
L1 0.00478 0.00019 0.00120 

L3 0.00470 0.00060 0.00118 

MI1024 
L1 0.00106 0.00004 0.00027 

L3 0.00134 0.00018 0.00033 

MI1025 
L1 0.01613 0.00065 0.00164 

L3 0.00710 0.00091 0.00178 

MI1026 
L1 0.00657 0.00021 0.00166 

L3 0.00210 0.00022 0.00053 
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frequency ranges in the data [49]. The energy is defined as the sum of the squares of the detail 
coefficients for each level [49]. The overall pattern in the analysis for the pressure transducers and the 
MI CH sites corresponds with the pattern for the MI USGS gage (l, o). The patterns of the CH sites 
compare with the patterns of the PT sites (e, h, k, n), except the MI1022 PT site (b) lacks a pattern. 
This is most likely do to the daily mean producing a small amount of data, since the sample duration 
was every minute. The patterns of the MI CH sites all appear similar to each other (a, d, g, j, m), and 
different from the OR CH site (c) where cycles appear as blue (decrease in energy). The pattern for 
the OR CH site (c) and the OR USGS gage (f) corresponds with each other in that both produced 
cycles for red/pink (increases in energy) and blue (decreases in energy). The OR USGS gage (f, i) 
appear different from that of the MI USGS gage (l, o) with no apparent cycles. The 2017-2018 USGS 
gages, OR (i), MI (l) match that of the pressure transducers (e, h, k, n). The MI USGS gage (l) compare 
well with the PT sites (k, n), while the OR USGS gage (i) lacks energies in the upper right and left 
corners. Using this type of signal analysis allows for pattern comparison in the stage heights as 
increases and decreases in energies.  

 

 
Figure 12. Comparison of USGS gage height and pressure transducer stage heights. 
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Figure 13. Scalogram images for SAS Wavelet Analysis. Left: CrowdHydrology sites CH1022-1026 (a, d, g, j, m). Middle: pressure 

transducer sites PT1022-1026 (b, e, h, k, n). Right: OR CH site (c), USGS OR gage 2014-2018 (f), USGS OR gage 2017-2018 (i), 
USGS MI gage 2017-2018 (l), USGS MI gage 2014-2018 (o).  
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6. Conclusion 

There are many crowdsourced databases involving various data types such as hydrology, precipitation, 
and water quality (Appendix 2), covering the regions where no systematic monitoring existed 
previously. To improve the quality of citizen science data, a binary decision tree model has been 
generated to flag potentially erroneous data points. Optimal categorization rules were selected based 
on their performance for finding ‘wrong record’ (negative stage value) and ‘bias record’ (extreme 
value). The overall classification accuracy of the decision tree shows potential; however, the 
misclassification of natural extreme values can occur. The RMSE of the crowdsourced data obtained 
from our study is above the 0.0061 m level of the USGS gauging staff, but the percentage estimates 
are all very small indicating that the crowdsourced data has a high level of accuracy. RMSE may not 
be the best estimate of error for two observed datasets, and we should consider other methods of 
error estimation to determine uncertainty in crowdsourced datasets. Through further refinement of 
the decision tree, the use of high-accuracy citizen science data would fill NWM observational gaps and 
enhance output forecasts.  
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Supplementary Materials: 

S.1. Literature reviewed crowdsourced projects 
Table S.1. Literature review of crowdsourced water flow/water level projects. 

Data  

source 
Data 

description 
Project  

objectives 

Study  

area 

Technique 
&  

algorithm 

Complementary 
data Reference 

Water flow/levels 

YouTube 

Flood movie 
taken by 

witnesses, 
recorded under 

non-ideal 
conditions 

Gauging extreme 
floods for post-

flood determination 
of stream discharges 

the Saint-Julien 
torrent, France 

Large-scale 
particle image 
velocimetry 

(LSPIV) 

 
Le 

Boursicaud 
et al. 2016 

YouTube 

Videos of the 
cave recording 

suitable 
reference points 
like cave graffiti 

Monitoring water 
level rise in cave 

Dahl Hith, 
southeast of 

Riyadh, Saudi 
Arabia 

Estimated the 
distances 

between the 
reference 
points and 
water level 

Videos by own 
photographs taken 

during two site 
visits 

Michelsen et 
al. 2016 

Hydrological 
observations of 
social sensors 

used by citizens 

Crowdsourced 
water level 

Demonstrating data 
collected by citizens 

can complement 
traditional sensor 

networks and 
improve the 

accuracy of flood 
forecasts. 

The Brue (UK), 
Sieve (Italy), 

Alzette 
(Luxembourg), 

and Bacchiglione 
(Italy) catchments 

Lumped and 
semi-

distributed 
hydrological 

models 

Streamflow data 
from professional 

agencies 

Mazzoleni et 
al. 2017 

Flood Chasers 
Project 

Videos and 
photos of flash 
floods in rivers 
recorded and 

shared by 
citizens 

Estimating river 
flow velocity and 

discharge based on 
flood videos 

recorded by citizens 

Argentina LSPIV  Le Coz et al. 
2016 

The FloodScale 
project 

Flood home 
movies from the 

public 

Extracting surface 
flow velocities and 

discharges from 
flood videos 

Ardèche river 
catchment, 
South-East 

France 

Portable 
surface 
velocity 

radars; LSPIV 

Discharge data 
from upstream 
gauging station 

Le Coz et al. 
2016 
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Table S.2. Literature review of crowdsourced hydrologic projects 

Data 

source 
Data 

description 
Project 

objectives 

Study 

area 

Technique 
& 

algorithm 

Complementary 
data Reference 

 

Hydrologic database generation 

Text message 
from passersby 

Hydrologic 
measurements 
and the station 
number read by 

untrained 
passersby 

Generating a 
crowdsourced database 

to collect and post 
hydrologic 

measurements 

Buffalo, 
Cattaraugus, 
and Wiscoy 

Creek 
watersheds in 
Western New 
York, USA. 

Object-
oriented 
Python 

 
Fienen et al. 
2012; Lowry 
et al. 2013 

Water clarity 
reading from 
volunteers 

Disappearance / 
reappearance 

point of a Secchi 
disk 

Expanding the state 
water-quality 

monitoring network to 
help determine the 

condition of Minnesota 
lakes and streams 

Minnesota, 
USA   

Minnesota 
Pollution 
Control 

Agency. 2014 
(Accessed 

July 25 2014) 

Paper data 
forms from 

trained 
volunteers 

Coordinates of 
the beginning 
and end points 
of all surface 

water larger than 
30 ft in length 

Monitoring the extent 
of perennial surface 

flow in dryland regions 

The San 
Pedro River, 

Arizona, USA 

Wet/dry 
mapping 

National 
Hydrography 

Dataset, 1:24,000-
scale, US 

Geological Survey 

Turner et al. 
2011 

The RiskScape 
project 

Pictures of 
maximum flood 

levels from 
residents 

Building flood hazard 
map to calculate flood 

risk and potential losses 
across the city 

New Zealand  LiDAR; additional 
survey data 

Le Coz et al. 
2016 

QLD FLOOD 
CRISIS MAP 

A floods crowd-
map posting 
flood-related 
information 

from citizen’s 
email, text 
message, 

Twitter, or the 
website itself. 

Using volunteered 
geographic information 

such as photographs 
and videos to assist in 

mapping the flood 
extents in regions 

where there was little or 
no mapping available  

Queensland, 
Australia  RTK GPS point 

data 
McDougall. 

2011 
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Table S.3. Literature review of crowdsourced water quality project 

Water Quality 

Images taken 
by test users 

mobile phone 
cameras 

Pictures of tags 
located at 

different water 
depths with GPS 

location and 
timestamp 

Monitoring water 
quality (Secchi depth 
and turbidity) using 

mobile phones and a 
small device designed 

for water quality 
measurements. 

Finland 
Automatic 
Secchi3000 

depth analysis 

Field water quality 
measurement 

Toivanen et 
al. 2013 

 

Table S.4. Literature review of crowdsourced data confidence estimation. 

Data 

source 
Data 

description 
Project 

objectives 

Study 

area 

Technique 
& 

algorithm 

Complementary 
data Reference 

 

Data confidence estimation 

Florida 
LAKEWATC

H program 

TP, TN, 
chlorophyll and 
Secchi disk data 
from volunteer 

samplers 

Testing the reliability of 
volunteer collected 
water quality data 

Florida, USA 

Freezing for 
sample 

preservation; 
ANOVA; 
correlation 
coefficient 

Professional 
measured data 

Canfield et 
al. 2002 

Waterwatch 
Victoria 

monitoring 
network 

Turbidity, 
electrical 

conductivity 
(EC), pH and 

total phosphorus 

Assessing confidence 
limits of community 

collected water quality 
data 

Australia T-tests; F-tests 

Professional data 
from Victorian 
Water Quality 

Monitoring 
Network 

(VWQMN) 

Nicholson et 
al 2002 

Records from 
Secchi 

application on 
seafarers’ 

smartphones 

Secchi depth 
with GPS 

location, date 
and time 

Estimating accuracy of 
ocean transparency data 

from seafarer in 
phytoplankton and 

climate research 

Global scale 

Ocean Color 
Index (OCI); 

inverse-
squared 
distance 
method 

MODIS Level-3 
data; Bathymetry 
data from a global 
ocean bathymetry 
chart (0.1 latitude 
by 0.1 longitude) 

Seafarers et 
al. 2017 
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S.2. Online crowdsourced data sources 
Table S.5. Crowdsourced hydrology data. 

 

Name Website 
Data  

Description 
Collection 
Method 

Locatio
n 

Data  

Availabilit
y 

Data 
Amoun

t 

St
art 
Ye
ar 

Regio
n 

Participa
nts 

Crowd 
Hydrolo

gy 

www.cr
owdhyd
rology.c

om 

water level 
measuremen
ts in streams 

and lakes 

text 
message of 
stage height 
value from 

posted 
signs 

establish
ed sites 

map 
visualizatio
n of data 
points; 
freely 

accessible 
via 

download 
when point 

clicked 

>16,400 
measure
-ments 

20
10 

Unite
d 

States 

registered 
volunteer

s, local 
groups 

Crowd 
Water 

www.cr
owdwat
er.ch/en
/crowd
water-2/ 

water level, 
streamflow, 

soil 
moisture, 

flow 
conditions 

photos to 
app for 

water level, 
measureme
nts entered 

via app 
(CrowdWat

er | 
SPOTTER

ON) 

citizen's 
location 

and 
establish
ed sites 

photos 
shown on 
interactive 
map; freely 
accessible 

and 
displayed 

when 
photo 
clicked 

~541 
measure
-ments 

20
16 

Europ
e; 

North 
Ameri

ca; 
South 
Ameri

ca; 
Austra

lia; 
global 

registered 
users 

with app 

EPA 
Office 

of 
Water 

www.ep
a.gov/n
ps/nonp

oint-
source-
voluntee

r-
monitori

ng 

watershed 
survey 

assessment, 
macro-

invertebrates
, water 
quality, 

stream flow, 
and 

ecological 
measuremen

ts 

volunteers 
analyze, 

make full 
reports, and 
present data 

voluntee
r's 

locations 

visualizatio
n map 

displays 
monitoring 
programs 
https://ac
wi.gov/mo
nitoring/v

m/program
s/vm_map.

html  

n/a n/
a 

Unite
d 

States 

trained 
volunteer

s 

Fresh 
Water 
Watch 

https://
freshwat
erwatch.
thewater
hub.org

/ 

water 
quality, flow, 
water level, 
ecological 

measuremen
ts 

measureme
nts 

uploaded 
from paper, 
web, or app 

based 
datasheet 
along with 

photo 

voluntee
r's 

location 
and 

establish
ed sites 

map 
visualizatio

n; freely 
accessible 

and 
displayed 
when data 

point 
clicked 

>20,000 
measure
-ments 

20
12 global 

organizati
ons, 

school 
groups, 

volunteer 
groups, 

k-12 
schools 

Hydrology, water levels, stream flow 
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Montan
a 

Ground
-water 

Academ
y 

www.u
mt.edu/
ground

wateraca
demy/ 

measuremen
ts of 

groundwater 
and 

groundwater
-surface 
water 

interactions 

data 
submitted 
online via 

datasheet at 
citsci.org 

establish
ed sites 

freely 
accessible 

via 
download 

www.citsci.
org 

 

316 
measure
-ments 

20
15 

Monta
na, 

USA 

registered 
member 
volunteer

s, high 
school 

students 

Stream 
Flow 

Monitor
ing in 

Upstate 
New 
York 

www.cit
sci.org/
CWIS43
8/Brow
se/Proje
ct/Proje
ct_Info.
php?Pro
jectID=

673 

stream water 
height 

measuremen
ts 

data 
submitted 
online via 

datasheet at 
citsci.org 

establish
ed sites 

freely 
accessible 

via 
download 

www.citsci.
org 

 

~112 
measure
-ments 

20
15 

Finger 
Lakes 
region 

of 
New 
York, 
USA 

registered 
member 
volunteer

s 

Stream 
Tracker 

www.str
eamtrac
ker.org/ 

record 
presence 
(water) or 
absence 

(dry) of flow 

observation
s collected 
via mobile 
application 

and 
datasheets 

establish
ed sites 

freely 
accessible 

via 
download 

www.citsci.
org 

 

~6,157 
measure
-ments  

20
16 

Unite
d 

States 

registered 
member 
volunteer

s 

Stream 
Tracker 
Boulder 
County 

www.cit
sci.org/
CWIS43
8/Brow
se/Proje
ct/Proje
ct_Info.
php?Pro
jectID=

2039 

flow and 
water quality 

data 
measuremen

ts 

data 
submitted 
online via 

datasheet at 
citsci.org 

voluntee
r's 

location 
and 

establish
ed sites 

freely 
accessible 

via 
download 

www.citsci.
org 

 

~152 
measure
-ments 

20
18 

Bould
er 

Count
y, CO, 
USA 

local 
schools 

Water 
Pressure

s. org 

www.wa
terpress
ures.org

/ 

watershed 
assessment 

2-3 minute 
video 

documentar
y films 

citizen's 
location 

videos 
freely 

accessible 
www.water
pressures.o
rg/videos  

n/a 20
07 global 

registered 
volunteer

s with 
recording 
devices 

Water-
shed 

Educati
on 

Networ
k 

www.m
ontanaw
atershed

.org/ 

stream bed 
assessments, 

macro-
invertebrate, 

and water 
quality 

measuremen
ts 

data 
submitted 
online via 

datasheet at 
citsci.org 

establish
ed sites 

some data 
freely 

accessible 
via 

download 
www.citsci.

org 

 

n/a 19
96 

Monta
na, 

USA 

registered 
member 
volunteer
s, school 
programs
, summer 
programs 

What's 
your 

http://a
rcg.is/0
Pe4fP 

water level 
reports, 

water depth 
measureme
nts entered 

citizen's 
location 

map 
visualizatio

n, freely 
accessible 

>1000 
observa-

tions 

20
12 

Unite
d 

volunteer
s with 
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water 
level? 

via online 
form 

by clicking 
on each 
report 

States; 
global 

website 
access 

WiKi 
Water-
shed 

https://
wikiwate
rshed.or

g/ 

water 
quality, 

atmospheric 
& water 

conditions 
measuremen

ts (depth, 
pressure, 

temperature, 
humidity) 

sensor data 
imported to 

an 
interactive 
map-based 

web 
application, 

Monitor 
My 

Watershed 

voluntee
r's 

sensor 
location 

map 
visualizatio

n tools; 
data freely 
accessible 

http://data
.envirodiy.o
rg/browse/ 

167 sites n/
a global 

registered 
member 
volunteer

s with 
sensor 

 
Table S.6. Crowdsourced precipitation, temperature, and tide level data. 

 

Name Website 
Data 

Description 
Collection 
Method Location 

Data  

Availability 

Data 
Amou

nt 

Sta
rt 

Yea
r 

Regio
n 

Participa
nts 

CoCoRa
HS 

(Commu
nity 

Collabora
tive Rain, 
Hail and 

Snow 
Network) 

www.co
corahs.o

rg/ 

rain, hail, 
snow, soil 
moisture 

measureme
nts 

rain gauge, 
data 

entered via 
interactive 
web-site 

form 

volunteer'
s 

locations 

map 
visualization; 

freely 
accessible 

via 
download 

>800
0 

meas
ure-

ments 
per 
day 

201
0 

Unite
d 

States
; 

Cana
da; 

Baha
mas 

registere
d 

voluntee
rs, 

classroo
m 

educatio
n 

program
, 4H 

IceWatch 
USA™ 

www.na
tureabo
unds.or
g/IceW
atch_U
SA.html 

snow, 
precipitatio
n, and ice 

cover 
measureme
nts; wildlife 

activity 
observation

s 

observation 
forms are 

reported via 
mail or 
email 

volunteer 
establishe

d site 

available to 
interested 
scientists 

n/a n/a 

Unite
d 

States
; 

Cana
da 

registere
d 

voluntee
rs 

ISeeChan
ge 

www.ise
echange

.org/ 

flooding, 
agriculture, 
snow and 

ice, 
landscapes, 

coastal 
erosion, 
recharge 
and rain, 
high tides 

pictures are 
uploaded to 
ISeeChange 

app 

citizen's 
location 

post freely 
accessible 

www.iseecha
nge.org/inve

stigations 

>100
0 

obser
va-

tions 

n/a global 

registere
d 

voluntee
rs 

Precipitation, temperature, and tide levels 
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and sea 
level rise 

M-ping 
https://
mping.o

u.edu 

collects 
geotagged, 

time 
stamped 

reports of 
weather 

conditions 
near the 
surface 

smart 
phone or 
mobile 

device data 
submission 

volunteer'
s location 

open access 
to view map 
of weather 

reports, 
must apply 

for access to 
data 

https://mpi
ng.ou.edu/st
atic/mping/
access.html  

n/a  

201
2; 

201
6 

Unite
d 

States
; 

global 

registere
d 

voluntee
rs 

Snow 
Tweet 

www.sn
owtweet
s.org/ 

snow and 
ice and 

measured 
and 

mapped in 
near real 

time 

tweet in 
snow 

depth, or 
via 

interactive 
web-site 

form 

citizen's 
location 

view on 
visualization 
tool, freely 
accessible 

via 
download 

link 

n/a 200
9 global 

Twitter 
account 
holders 

Hot 
Spots for 

Trout 

www.cit
sci.org/
CWIS43
8/Brow
se/Proj
ect/Proj
ect_Inf
o.php?P
rojectI
D=214

7  

water & air 
temperatur

e 
measureme

nts 

data 
submitted 
online via 

datasheet at 
citsci.org 

establishe
d sites 

freely 
accessible 

via 
download 

www.citsci.o
rg 

 

~36 
meas
ure-

ments 

201
8 

Roari
ng 

Fork 
Water
-shed, 
CO, 
USA 

registere
d 

member 
voluntee

rs 

Globe 
Observer 

https://
observe
r.globe.
gov/ 

temperatur
e, 

precipitatio
n, water 

quality, soil 
characteriza

tion, 
landcover, 

carbon 
cycling 

measureme
nts 

submitted 
via Globe 
Observer 

apps 

citizen's 
location 

interactive 
map with 

visualization 
tools 

>76,7
00 

meas
ure-

ments 

199
4 global 

registere
d 

member
s with 
app 
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Table S.7. Crowdsourced water quality data. 

 

Name Website 
Data 

Descriptio
n 

Collection 
Method 

Locatio
n 

Data  

Availability 

Data 
Amou

nt 

Start 
Year Region Participa

nts 

EarthEcho 
International 

www.m
onitorw
ater.org

/ 

water 
quality and 
temperature 
measureme

nts 

online 
database 
entry at 

app.monitor
water.org    

voluntee
r's 

location 

interactive 
map 

visualization; 
freely 

accessible via 
download 

www.monitor
water.org/too

ls/reports 

>109,
000 

measu
re-

ments 

2005
, 

2007 
(map

) 

global 

communit
y & 

school 
organizati
ons k-12 
schools 

Eye On 
Water.org 

http://e
yeonwat
er.org/ 

water color 
and clarity 
measureme

nts 

pictures 
submitted 

via 
EyeOnWate

r app 

citizen's 
location 

map 
visualization 
tools; data 

freely 
accessible 

www.citclops.
eu/search/we

lcome.php  

4,881 
app 

(color)
; 

>280,
000 

histori
cal 

(color) 

2016
, 

1936 
(hist
or-
ical) 

global 
registered 
members 
with app 

Rios 
Saludables de 
Osa - Costa 

Rica 

https://
riossalud
ablesdeo
sa.org/ 

water 
quality and 
temperature 
measureme

nts 

data 
submitted 
online via 

datasheet at 
citsci.org 

establish
ed sites 

freely 
accessible via 

download 
www.citsci.or

g 

~4,40
3 

measu
re-

ments 

2014 Costa 
Rica 

registered 
member 

volunteers 

Stream Selfie 
www.str
eamselfi
e.org/ 

water 
quality 

photos 
uploaded at 
https://scist
arter.com/d
ata/streams

elfie  

citizen's 
location 

photos shown 
on map 
location 

>1,02
5 

photos 
n/a 

United 
States; 
global 

registered 
members 

of 
scistarter.c

om 

The WQI 
Project 

https://
thewqipr
oject.org

/ 

water 
quality 

measuremen
ts entered 
via website 

voluntee
r's 

location 

map 
visualization; 

freely 
accessible and 

displayed 
when data 

point clicked 

>100 
measu

re-
ments 

2015 global k-12 
schools 

Trout 
Unlimited 
Coldwater 

Conservation 
Corps Water 

Quality 
Monitoring 

www.cit
sci.org/
CWIS43
8/Brow
se/Proje
ct/Proje

ct 

water 
quality, 

temperature
, rain 

measureme
nts 

data 
submitted 
online via 

datasheet at 
citsci.org 

establish
ed sites 

freely 
accessible via 

download 
www.citsci.or

g 

~45,4
78 

measu
re-

ments 

2010 

West 
Virginia

, 
Virginia
, USA 

registered 
member 

volunteers 

Water quality, temperature 
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Utah Water 
Watch 

www.cit
sci.org/
CWIS43
8/Brow
se/Proje
ct/Proje
ct_Info.
php?Pro
jectID=

2043 

stream and 
lake water 

quality, 
temperature

, rain, 
macro-

invertebrate 
measureme

nts 

data 
submitted 
online via 

datasheet at 
citsci.org 

establish
ed sites 

freely 
accessible via 

download 
www.citsci.or

g  

~89,2
37 

measu
re-

ments 

2002 Utah, 
USA 

registered 
member 

volunteers 

Water Trail 
Association 

www.ny
cwatertr
ail.org/
water_q
uality.ht

ml 

water 
quality, 

precipitatio
n, tide 

measureme
nts 

samples are 
collected 

and taken to 
a lab for 
analysis 

establish
ed sites 

map 
visualization 

with data 
displayed; 

freely 
accessible 

spreadsheet 
download 

>1,00
0 

measu
re-

ments 

2011 

New 
York 
City, 
USA 

volunteers 

Yojoa 
Watershed 

Measurement
s 

www.cit
sci.org/
CWIS43
8/Brow
se/Proje
ct/Proje
ct_Info.
php?Pro
jectID=

655 

water 
quality, 

temperature
, rain 

measureme
nts 

data 
submitted 
online via 

datasheet at 
citsci.org 

establish
ed sites 

access granted 
by current 
members; 

data 
download 

www.citsci.or
g  

19,406 
measu

re-
ments 

2015 

Hondur
asCentr

al 
Americ

a 

registered 
member 

volunteers 
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